- 【图像处理基石】如何入门大规模三维重建?
小米玄戒Andrew
图像处理基石深度学习人工智能三维重建大规模三维重建立体视觉大模型LLM
入门大规模三维重建需要从基础理论、核心技术到实践工具逐步深入,同时需关注该领域的经典工作和前沿进展。以下是分阶段的入门路径及值得重点学习的工作:一、基础理论与前置知识大规模三维重建的核心是从海量图像或传感器数据中恢复场景的三维结构,涉及计算机视觉、摄影测量、图形学、最优化等多个领域,需先掌握以下基础:数学基础线性代数:矩阵运算、特征值分解(用于相机姿态估计)、奇异值分解(SVD,用于基础矩阵求解)
- 前沿交叉:Fluent与深度学习驱动的流体力学计算体系
m0_75133639
流体力学深度学习人工智能航空航天fluent流体力学材料科学CFD
基础模块流体力学方程求解1、不可压缩N-S方程数值解法(有限差分/有限元/伪谱法)·Fluent工业级应用:稳态/瞬态流、两相流仿真(圆柱绕流、入水问题)·Tecplot流场可视化与数据导出2、CFD数据的AI预处理·基于PCA/SVD的流场数据降维·特征值分解与时空特征提取深度学习核心3.物理机理嵌入的神经网络架构·物理信息神经网络(PINN):将N-S方程嵌入损失函数(JAX框架实现)·神经常
- Python 用 NumPy 进行矩阵分解
Python用NumPy进行矩阵分解关键词:NumPy,矩阵分解,线性代数,奇异值分解,QR分解,LU分解,特征值分解摘要:本文将深入探讨使用NumPy进行矩阵分解的各种技术。我们将从基础的线性代数概念出发,详细讲解五种核心矩阵分解方法:LU分解、QR分解、奇异值分解(SVD)、特征值分解和Cholesky分解。每种方法都将配有数学原理说明、NumPy实现代码和实际应用案例。文章还将介绍矩阵分解在
- LSA主题模型:基于奇异值分解的主题模型
AI天才研究院
AI人工智能与大数据AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LSA主题模型:基于奇异值分解的主题模型1.背景介绍主题模型是一种无监督的机器学习技术,用于发现大规模文本语料库中隐藏的语义结构。它能够自动识别文档集合中的主题,并根据这些主题对文档进行聚类和分类。主题模型在文本挖掘、信息检索、推荐系统等领域有着广泛的应用。LSA(LatentSemanticAnalysis)是一种经典的主题模型算法,基于奇异值分解(SVD)对词-文档矩阵进行分解,从而揭示词语和
- 60天python训练营打卡day20
tan90�=
python60天打卡python开发语言
学习目标:60天python训练营打卡学习内容:DAY20奇异值SVD分解奇异值分解这个理论,对于你未来无论是做图像处理、信号处理、特征提取、推荐系统等都非常重要,所以需要单独抽出来说一下这个思想。—甚至我在非常多文章中都看到单独用它来做特征提取(伪造的很高大上),学会这个思想并不复杂没学过线代的不必在意,推导可以不掌握,关注输入输出即可。今天这期有点类似于帮助大家形成闭环—考研数学不是白考的知识
- Python 训练营打卡 Day 20-奇异值SVD分解
帮关下月亮
python训练营python算法开发语言
一.奇异值分解(SVD)的输入和输出输入:一个任意的矩阵A,尺寸为m×n(其中m是行数,n是列数,可以是矩形矩阵,不必是方阵)奇异值分解(SVD)得到的三个矩阵U、Σ和V^T各有其特定的意义和用途,下面我简要说明它们的作用:U(奇异值向量矩阵):是一个m×m的正交矩阵,列向量是矩阵AA^T的特征向量作用:表示原始矩阵A在行空间(样本空间)中的主方向或基向量。简单来说,U$的列向量描述了数据在行维度
- 疏锦行Python打卡 DAY 20 奇异值SVD分解
橘子夏与单车少年k
Python60天打卡训练营pythonnumpy开发语言
importnumpyasnp#创建一个矩阵A(5x3)A=np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15]])print("原始矩阵A:")print(A)#进行SVD分解U,sigma,Vt=np.linalg.svd(A,full_matrices=False)print("\n奇异值sigma:")print(sigma)#保留
- Python打卡训练营day20-奇异值SVD分解
sak77
python打卡训练营python机器学习奇异值分解SVD
知识点回顾:线性代数概念回顾(可不掌握)奇异值推导(可不掌握)奇异值的应用特征降维:对高维数据减小计算量、可视化数据重构:比如重构信号、重构图像(可以实现有损压缩,k越小压缩率越高,但图像质量损失越大)降噪:通常噪声对应较小的奇异值。通过丢弃这些小奇异值并重构矩阵,可以达到一定程度的降噪效果。推荐系统:在协同过滤算法中,用户-物品评分矩阵通常是稀疏且高维的。SVD(或其变种如FunkSVD,SVD
- MATLAB实现的基于SVD的数字图像水印技术
张锦云
本文还有配套的精品资源,点击获取简介:在数字图像处理中,SVD水印技术是一种有效的版权保护方法。它利用SVD算法在MATLAB环境下嵌入和提取水印,确保图像质量的同时隐藏信息。本文介绍了在MATLAB中实现SVD水印的步骤,包括图像预处理、SVD分解、水印嵌入、图像重构、水印提取和代码注释等关键环节。实践中涉及的技术点包括图像处理、SVD函数使用、数据编码策略、数值稳定性和图像质量评估。1.数字图
- AI推荐系统演进史:从协同过滤到图神经网络与强化学习的融合
万米商云
人工智能神经网络深度学习
每一次滑动手机屏幕,电商平台向你推荐心仪商品的背后,是超过百亿量级的浮点运算。从早期的“猜你喜欢”到如今的“比你更懂你”,商品推荐引擎已悄然完成从简单规则到深度智能的技术跃迁。一、协同过滤:推荐系统的基石与演进协同过滤(CollaborativeFiltering)作为推荐系统的“古典方法”,其核心思想朴素却有力:相似的人喜欢相似的东西。早期的矩阵分解技术(如2009年的SVD算法)将用户-物品交
- 矩阵分解相关知识点总结(四)
嵙杰
数学基础矩阵分解特征值SVD分解
文章目录四、矩阵的满秩分解五、矩阵的奇异值分解书接上上文矩阵分解相关知识点总结(二)四、矩阵的满秩分解 设A∈Crm×n(r>0)A\inC_r^{m\timesn}(r>0)A∈Crm×n(r>0),存在矩阵F∈Crm×rF\inC_r^{m\timesr}F∈Crm×r和G∈Crr×nG\inC_r^{r\timesn}G∈Crr×n,使得A=FG(7)\color{#F00}A=FG\ta
- 矩阵的奇异值(Singular Values)
幼儿园大哥~
扩展知识矩阵算法线性代数
矩阵的奇异值(SingularValues)是奇异值分解(SVD)过程中得到的一组重要特征值。它们在许多应用中非常重要,如信号处理、数据压缩和统计学等。以下是对奇异值及其计算和性质的详细解释:奇异值分解(SVD)奇异值分解是矩阵分解的一种方法,它将任意一个实数或复数矩阵分解为三个特定矩阵的乘积。具体来说,对于一个m×nm\timesnm×n的矩阵M\mathbf{M}M,其奇异值分解表示为:M=U
- 矩阵特征值和奇异值之间的关系
hxyzs
矩阵机器学习线性代数
矩阵的特征值和奇异值是线性代数中重要的概念,它们之间存在一定的关系。对于一个方阵,其特征值是该矩阵在空间中的特殊向量方向上的缩放因子。特征值可以通过解矩阵的特征值问题得到,即找到满足方程Ax=λx的非零向量x和标量λ。而对于一个非方阵的矩阵,它的奇异值则是矩阵的秩和特征向量的相对缩放因子。奇异值分解(SVD)可以将矩阵分解为三个部分:U、Σ和V^T,其中U和V是正交矩阵,Σ是一个对角矩阵,对角线上
- cortex-debug怎么提取添加.svd文件进行外设查看
c++小白,瞎写博客
vscode单片机
找到厂家提供的keil的pack包,改后缀成zip以压缩文件打开,把svd文件移出来,添加"svdFile"项
- 共现矩阵的SVD降维与低维词向量计算详解
幽·
NLP与机器学习矩阵线性代数
共现矩阵的SVD降维与低维词向量计算详解1.原始共现矩阵构建根据用户提供的共现对:句子1:(I,like),(like,apples)句子2:(I,like),(like,bananas)词汇表:[I,like,apples,bananas]窗口大小=2(假设共现对直接作为矩阵的非零元素),共现矩阵(M)如下(忽略单词自身的共现,即对角线为0):IlikeapplesbananasI0200lik
- 深入详解矩阵分解(SVD在推荐系统中的应用)
猿享天开
人工智能数学基础专讲矩阵线性代数
深入详解矩阵分解(SVD在推荐系统中的应用)矩阵分解是数据科学、机器学习和人工智能中的核心技术之一,尤其在推荐系统中展现出强大的应用潜力。本文将从基础数学概念开始,逐步深入到奇异值分解(SVD)的理论、计算过程、在推荐系统中的具体应用,并扩展到矩阵分解在人工智能其他领域的应用。通过详细的解释和具体的实例,帮助初学者全面掌握和理解矩阵分解的原理和应用。一、矩阵基础知识1.1什么是矩阵?矩阵是一个按照
- Diffusers代码学习:Stable Video Diffusion
duhaining1976
AIGC
稳定视频扩散(SVD)是一种强大的图像到视频生成模型,可以根据输入图像生成2-4秒的高分辨率(576x1024)视频。有此模型的两个变体,SVD和SVD-XT。SVDCheckpoint被训练以生成14帧视频,并且SVD-XTCheckpoint点被进一步微调以生成25帧视频。下面将在本指南中使用SVD-XTCheckpoint。importosos.environ["HF_ENDPOINT"]=
- 深入详解线性代数基础知识:理解矩阵与向量运算、特征值与特征向量,以及矩阵分解方法(如奇异值分解SVD和主成分分析PCA)在人工智能中的应用
猿享天开
人工智能数学基础专讲线性代数人工智能矩阵特征向量
深入详解线性代数基础知识在人工智能中的应用线性代数是人工智能,尤其是机器学习和深度学习领域的基石。深入理解矩阵与向量运算、特征值与特征向量,以及矩阵分解方法(如奇异值分解SVD和主成分分析PCA),对于数据降维、特征提取和模型优化至关重要。本文将详细探讨这些线性代数的核心概念及其在人工智能中的应用,并辅以示例代码以助理解。1.矩阵与向量运算线性代数中的矩阵与向量运算是理解高维数据处理和模型训练的基
- 如何深入学习MATLAB的高级应用?
tyatyatya
MATLAB教程学习matlab开发语言
文章目录要深入学习MATLAB的高级应用,需要在掌握基础语法后,系统性地学习特定领域的工具箱和算法,并通过实战项目提升能力。以下是分阶段的学习路径和资源推荐:一、深化核心技能高级矩阵运算与线性代数matlab%稀疏矩阵处理A=sparse([100;020;003]);%创建稀疏矩阵spy(A);%可视化稀疏结构%特征值分解与SVD[V,D]=eig(A);%特征值分解[U,S,V]=svd(A)
- 【图像处理基石】如何入门AI计算机视觉?
AndrewHZ
图像处理基石人工智能图像处理计算机视觉深度学习AIPyTorch
入门AI计算机视觉需要从基础理论、工具方法和实战项目三个维度逐步推进,以下是系统化的学习路径和建议:一、夯实基础:核心知识储备1.数学基础(必备)线性代数:矩阵运算、特征值分解、奇异值分解(SVD)——理解神经网络中的线性变换。概率论与统计:概率分布、贝叶斯定理、假设检验——支撑模型训练中的不确定性分析。微积分:导数、梯度、链式法则——深度学习优化(如反向传播)的核心。推荐资源:教材:《线性代数及
- 技术剖析|线性代数之特征值分解,支撑AI算法的数学原理
AI算力那些事儿
技术剖析线性代数人工智能算法
目录一、特征值分解的数学本质1、基本定义与核心方程2、几何解释与线性变换3、可对角化条件与分解形式二、特征值分解的计算方法1、特征多项式与代数解法2、数值计算方法3、计算实例与验证三、特征值分解在AI中的关键应用1、主成分分析(PCA)与数据降维2、图分析与网络科学3、矩阵分析与优化问题4、图像处理与信号分析四、特征值分解的扩展与相关技术1、奇异值分解(SVD)的关联2、广义特征值问题3、现代算法
- day 20
lcccyyy1
60天计划python
利用SVD奇异值分解进行降维奇异值分解(SVD)将原始矩阵A分解为A=UΣVᵀ,可完全重构A且无信息损失。实际应用中,常筛选排序靠前的奇异值及对应向量实现降维或数据压缩:1.排序特性:Σ矩阵对角线上奇异值降序排列,大值代表主要信息,小值代表次要信息或噪声,其大小反映对A的贡献程度。2.筛选规则:选前k个奇异值(k小于矩阵秩),常见规则有固定数量、累计方差贡献率达阈值、按奇异值下降“拐点”截断。3.
- SVD奇异值分解
zx43
python训练营打卡内容机器学习人工智能python笔记
知识点回顾:线性代数概念回顾(可不掌握)奇异值推导(可不掌握)奇异值的应用特征降维:对高维数据减小计算量、可视化数据重构:比如重构信号、重构图像(可以实现有损压缩,k越小压缩率越高,但图像质量损失越大)降噪:通常噪声对应较小的奇异值。通过丢弃这些小奇异值并重构矩阵,可以达到一定程度的降噪效果。推荐系统:在协同过滤算法中,用户-物品评分矩阵通常是稀疏且高维的。SVD(或其变种如FunkSVD,SVD
- 2024 AI 人工智能完整学习路线表
AI天才研究院
人工智能学习
十六大阶段概述阶段阶段名称实战项目收益第一阶段python基础与科学计算模块√泰坦尼克号数据分析案例√可视化剖析逻辑回归损失函数案例算法先行,技术随后。学习人工智能领域基础知识熟练掌握,打好坚实的内功基础。第二阶段AI数学知识√梯度下降和牛顿法推导√SVD奇异值分解应用第三阶段线性回归算法√代码实现梯度下降求解多元线性回归√保险花销预测案例第四阶段线性分类算法√分类鸢尾花数据集√音乐曲风分类√SV
- SVD求解两个点集之间的刚体运动,即旋转矩阵和平移向量。
咆哮的阿杰
机器学习Python矩阵算法线性代数
问题描述给出两个点集A和B,求解点集之间的刚体变化,包含scale,rotation,translate。使其A经过变换之后,可以和B在空间上对齐。原理SVD可以用于求解上述问题。假设有A点集A∈Rn×3A\inR^{n\times3}A∈Rn×3,B点集B∈Rn×3B\inR^{n\times3}B∈Rn×3,优化的目标是:argminR,t ∣∣R×A+T−B∣∣\underset{R,t}{
- 文本主题模型之潜在语义索引(LSI)
多尝试多记录多积累
好文章的搬运工:https://www.cnblogs.com/pinard/p/6805861.html先对矩阵做SVD分解,然后利用V矩阵,计算LSI,LSI得到的文本主题矩阵可以用于文本相似度计算。而计算方法一般是通过余弦相似度。需要选取主题的k值。LSI是最早出现的主题模型了,它的算法原理很简单,一次奇异值分解就可以得到主题模型,同时解决词义的问题,非常漂亮。但是LSI有很多不足,导致它在
- 【arXiv 2024】HiFiVFS: High Fidelity Video Face Swapping
旋转的油纸伞
人脸相关前沿研究从入门到实战计算机视觉人工智能职场和发展算法机器学习
【arXiv2024】HiFiVFS:HighFidelityVideoFaceSwapping一、前言文章核心观点Abstract文章的背景,动机思路,主要的贡献点分别是什么?详细介绍文章实现的整个过程,包括具体的细节。本文相对于SVD做出的改进有哪些?详细地介绍Fine-grainedAttributesLearning的整个流程。详细地介绍DetailedIdentityLearning的整
- C++手动实现奇异值分解(SVD)算法:从理论到代码实践
xMathematics
c++算法开发语言
C++手动实现奇异值分解(SVD)算法:从理论到代码实践项目背景与SVD核心概念在矩阵分解的广阔领域中,奇异值分解(SVD)宛如一颗璀璨的明星,占据着核心地位。它是一种强大且通用的矩阵分解技术,能够将任意矩阵分解为特定形式,为众多领域的问题解决提供了有力工具。手动实现SVD具有不可忽视的价值,它能让我们深入理解算法的底层逻辑,而不仅仅是停留在调用库函数的表面应用。矩阵分解的基本形式是将一个矩阵分解
- 【技巧】chol分解时,矩阵非正定时的临时补救措施,以MATLAB为例
MATLAB卡尔曼
MATLAB技巧矩阵matlab线性代数
针对非正定矩阵无法进行标准Cholesky分解的解决方案及MATLAB代码实现,结合不同应用场景的需求分层解析文章目录数值修正方法修正Cholesky分解LDL分解矩阵变换与重构特征值修正乘积法构造正定矩阵替代分解与降维方法QR分解与SVD主成分分析(PCA)应用场景与选择建议MATLAB实用工具与验证数值修正方法修正Cholesky分解通过添加微小正数到对角线元素,强制矩阵正定:function
- Open3D(C++) 四元数奇异值分解
点云侠
Open3D学习c++矩阵开发语言3d计算机视觉线性代数
目录一、算法原理1、原理概述2、实现过程3、参考文献二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫。一、算法原理1、原理概述 四元数矩阵的奇异值分解是将一个四元数矩阵分解成三个部分的乘积,即:Q=UΣV
- 多线程编程之存钱与取钱
周凡杨
javathread多线程存钱取钱
生活费问题是这样的:学生每月都需要生活费,家长一次预存一段时间的生活费,家长和学生使用统一的一个帐号,在学生每次取帐号中一部分钱,直到帐号中没钱时 通知家长存钱,而家长看到帐户还有钱则不存钱,直到帐户没钱时才存钱。
问题分析:首先问题中有三个实体,学生、家长、银行账户,所以设计程序时就要设计三个类。其中银行账户只有一个,学生和家长操作的是同一个银行账户,学生的行为是
- java中数组与List相互转换的方法
征客丶
JavaScriptjavajsonp
1.List转换成为数组。(这里的List是实体是ArrayList)
调用ArrayList的toArray方法。
toArray
public T[] toArray(T[] a)返回一个按照正确的顺序包含此列表中所有元素的数组;返回数组的运行时类型就是指定数组的运行时类型。如果列表能放入指定的数组,则返回放入此列表元素的数组。否则,将根据指定数组的运行时类型和此列表的大小分
- Shell 流程控制
daizj
流程控制if elsewhilecaseshell
Shell 流程控制
和Java、PHP等语言不一样,sh的流程控制不可为空,如(以下为PHP流程控制写法):
<?php
if(isset($_GET["q"])){
search(q);}else{// 不做任何事情}
在sh/bash里可不能这么写,如果else分支没有语句执行,就不要写这个else,就像这样 if else if
if 语句语
- Linux服务器新手操作之二
周凡杨
Linux 简单 操作
1.利用关键字搜寻Man Pages man -k keyword 其中-k 是选项,keyword是要搜寻的关键字 如果现在想使用whoami命令,但是只记住了前3个字符who,就可以使用 man -k who来搜寻关键字who的man命令 [haself@HA5-DZ26 ~]$ man -k
- socket聊天室之服务器搭建
朱辉辉33
socket
因为我们做的是聊天室,所以会有多个客户端,每个客户端我们用一个线程去实现,通过搭建一个服务器来实现从每个客户端来读取信息和发送信息。
我们先写客户端的线程。
public class ChatSocket extends Thread{
Socket socket;
public ChatSocket(Socket socket){
this.sock
- 利用finereport建设保险公司决策分析系统的思路和方法
老A不折腾
finereport金融保险分析系统报表系统项目开发
决策分析系统呈现的是数据页面,也就是俗称的报表,报表与报表间、数据与数据间都按照一定的逻辑设定,是业务人员查看、分析数据的平台,更是辅助领导们运营决策的平台。底层数据决定上层分析,所以建设决策分析系统一般包括数据层处理(数据仓库建设)。
项目背景介绍
通常,保险公司信息化程度很高,基本上都有业务处理系统(像集团业务处理系统、老业务处理系统、个人代理人系统等)、数据服务系统(通过
- 始终要页面在ifream的最顶层
林鹤霄
index.jsp中有ifream,但是session消失后要让login.jsp始终显示到ifream的最顶层。。。始终没搞定,后来反复琢磨之后,得到了解决办法,在这儿给大家分享下。。
index.jsp--->主要是加了颜色的那一句
<html>
<iframe name="top" ></iframe>
<ifram
- MySQL binlog恢复数据
aigo
mysql
1,先确保my.ini已经配置了binlog:
# binlog
log_bin = D:/mysql-5.6.21-winx64/log/binlog/mysql-bin.log
log_bin_index = D:/mysql-5.6.21-winx64/log/binlog/mysql-bin.index
log_error = D:/mysql-5.6.21-win
- OCX打成CBA包并实现自动安装与自动升级
alxw4616
ocxcab
近来手上有个项目,需要使用ocx控件
(ocx是什么?
http://baike.baidu.com/view/393671.htm)
在生产过程中我遇到了如下问题.
1. 如何让 ocx 自动安装?
a) 如何签名?
b) 如何打包?
c) 如何安装到指定目录?
2.
- Hashmap队列和PriorityQueue队列的应用
百合不是茶
Hashmap队列PriorityQueue队列
HashMap队列已经是学过了的,但是最近在用的时候不是很熟悉,刚刚重新看以一次,
HashMap是K,v键 ,值
put()添加元素
//下面试HashMap去掉重复的
package com.hashMapandPriorityQueue;
import java.util.H
- JDK1.5 returnvalue实例
bijian1013
javathreadjava多线程returnvalue
Callable接口:
返回结果并且可能抛出异常的任务。实现者定义了一个不带任何参数的叫做 call 的方法。
Callable 接口类似于 Runnable,两者都是为那些其实例可能被另一个线程执行的类设计的。但是 Runnable 不会返回结果,并且无法抛出经过检查的异常。
ExecutorService接口方
- angularjs指令中动态编译的方法(适用于有异步请求的情况) 内嵌指令无效
bijian1013
JavaScriptAngularJS
在directive的link中有一个$http请求,当请求完成后根据返回的值动态做element.append('......');这个操作,能显示没问题,可问题是我动态组的HTML里面有ng-click,发现显示出来的内容根本不执行ng-click绑定的方法!
 
- 【Java范型二】Java范型详解之extend限定范型参数的类型
bit1129
extend
在第一篇中,定义范型类时,使用如下的方式:
public class Generics<M, S, N> {
//M,S,N是范型参数
}
这种方式定义的范型类有两个基本的问题:
1. 范型参数定义的实例字段,如private M m = null;由于M的类型在运行时才能确定,那么我们在类的方法中,无法使用m,这跟定义pri
- 【HBase十三】HBase知识点总结
bit1129
hbase
1. 数据从MemStore flush到磁盘的触发条件有哪些?
a.显式调用flush,比如flush 'mytable'
b.MemStore中的数据容量超过flush的指定容量,hbase.hregion.memstore.flush.size,默认值是64M 2. Region的构成是怎么样?
1个Region由若干个Store组成
- 服务器被DDOS攻击防御的SHELL脚本
ronin47
mkdir /root/bin
vi /root/bin/dropip.sh
#!/bin/bash/bin/netstat -na|grep ESTABLISHED|awk ‘{print $5}’|awk -F:‘{print $1}’|sort|uniq -c|sort -rn|head -10|grep -v -E ’192.168|127.0′|awk ‘{if($2!=null&a
- java程序员生存手册-craps 游戏-一个简单的游戏
bylijinnan
java
import java.util.Random;
public class CrapsGame {
/**
*
*一个简单的赌*博游戏,游戏规则如下:
*玩家掷两个骰子,点数为1到6,如果第一次点数和为7或11,则玩家胜,
*如果点数和为2、3或12,则玩家输,
*如果和为其它点数,则记录第一次的点数和,然后继续掷骰,直至点数和等于第一次掷出的点
- TOMCAT启动提示NB: JAVA_HOME should point to a JDK not a JRE解决
开窍的石头
JAVA_HOME
当tomcat是解压的时候,用eclipse启动正常,点击startup.bat的时候启动报错;
报错如下:
The JAVA_HOME environment variable is not defined correctly
This environment variable is needed to run this program
NB: JAVA_HOME shou
- [操作系统内核]操作系统与互联网
comsci
操作系统
我首先申明:我这里所说的问题并不是针对哪个厂商的,仅仅是描述我对操作系统技术的一些看法
操作系统是一种与硬件层关系非常密切的系统软件,按理说,这种系统软件应该是由设计CPU和硬件板卡的厂商开发的,和软件公司没有直接的关系,也就是说,操作系统应该由做硬件的厂商来设计和开发
- 富文本框ckeditor_4.4.7 文本框的简单使用 支持IE11
cuityang
富文本框
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>知识库内容编辑</tit
- Property null not found
darrenzhu
datagridFlexAdvancedpropery null
When you got error message like "Property null not found ***", try to fix it by the following way:
1)if you are using AdvancedDatagrid, make sure you only update the data in the data prov
- MySQl数据库字符串替换函数使用
dcj3sjt126com
mysql函数替换
需求:需要将数据表中一个字段的值里面的所有的 . 替换成 _
原来的数据是 site.title site.keywords ....
替换后要为 site_title site_keywords
使用的SQL语句如下:
updat
- mac上终端起动MySQL的方法
dcj3sjt126com
mysqlmac
首先去官网下载: http://www.mysql.com/downloads/
我下载了5.6.11的dmg然后安装,安装完成之后..如果要用终端去玩SQL.那么一开始要输入很长的:/usr/local/mysql/bin/mysql
这不方便啊,好想像windows下的cmd里面一样输入mysql -uroot -p1这样...上网查了下..可以实现滴.
打开终端,输入:
1
- Gson使用一(Gson)
eksliang
jsongson
转载请出自出处:http://eksliang.iteye.com/blog/2175401 一.概述
从结构上看Json,所有的数据(data)最终都可以分解成三种类型:
第一种类型是标量(scalar),也就是一个单独的字符串(string)或数字(numbers),比如"ickes"这个字符串。
第二种类型是序列(sequence),又叫做数组(array)
- android点滴4
gundumw100
android
Android 47个小知识
http://www.open-open.com/lib/view/open1422676091314.html
Android实用代码七段(一)
http://www.cnblogs.com/over140/archive/2012/09/26/2611999.html
http://www.cnblogs.com/over140/arch
- JavaWeb之JSP基本语法
ihuning
javaweb
目录
JSP模版元素
JSP表达式
JSP脚本片断
EL表达式
JSP注释
特殊字符序列的转义处理
如何查找JSP页面中的错误
JSP模版元素
JSP页面中的静态HTML内容称之为JSP模版元素,在静态的HTML内容之中可以嵌套JSP
- App Extension编程指南(iOS8/OS X v10.10)中文版
啸笑天
ext
当iOS 8.0和OS X v10.10发布后,一个全新的概念出现在我们眼前,那就是应用扩展。顾名思义,应用扩展允许开发者扩展应用的自定义功能和内容,能够让用户在使用其他app时使用该项功能。你可以开发一个应用扩展来执行某些特定的任务,用户使用该扩展后就可以在多个上下文环境中执行该任务。比如说,你提供了一个能让用户把内容分
- SQLServer实现无限级树结构
macroli
oraclesqlSQL Server
表结构如下:
数据库id path titlesort 排序 1 0 首页 0 2 0,1 新闻 1 3 0,2 JAVA 2 4 0,3 JSP 3 5 0,2,3 业界动态 2 6 0,2,3 国内新闻 1
创建一个存储过程来实现,如果要在页面上使用可以设置一个返回变量将至传过去
create procedure test
as
begin
decla
- Css居中div,Css居中img,Css居中文本,Css垂直居中div
qiaolevip
众观千象学习永无止境每天进步一点点css
/**********Css居中Div**********/
div.center {
width: 100px;
margin: 0 auto;
}
/**********Css居中img**********/
img.center {
display: block;
margin-left: auto;
margin-right: auto;
}
- Oracle 常用操作(实用)
吃猫的鱼
oracle
SQL>select text from all_source where owner=user and name=upper('&plsql_name');
SQL>select * from user_ind_columns where index_name=upper('&index_name'); 将表记录恢复到指定时间段以前
- iOS中使用RSA对数据进行加密解密
witcheryne
iosrsaiPhoneobjective c
RSA算法是一种非对称加密算法,常被用于加密数据传输.如果配合上数字摘要算法, 也可以用于文件签名.
本文将讨论如何在iOS中使用RSA传输加密数据. 本文环境
mac os
openssl-1.0.1j, openssl需要使用1.x版本, 推荐使用[homebrew](http://brew.sh/)安装.
Java 8
RSA基本原理
RS