TensorFlow DNN 以库函数的方式实现MNIST手写识别

本文将以库函数的方式实现MNIST手写识别,共三个程序。第一个是mnist_inference.py, 它定义了前向传播的过程以及神经网络中的参数。第二个事mnist_train.py, 它定义了神经网络的训练过程。第三个是mnist_eval.py, 它定义了测试过程。

#coding:utf-8
#mnist_inference.py

import tensorflow as tf

#定义神经网络相关参数
INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500

#通过tf.get_variable 函数来获取变量
#在训练神经网络时会创建这些变量
#在测试时会通过保存的模型,加载这些变量的取值
#可以在变量加载时将“滑动平均变量”重命名,所以可以在训练时使用变量自身,在测试时使用变量的滑动平均值
#在这个函数中也会将变量的正则化损失加入损失集合
def get_weight_variable(shape, regularizer):
	#对权重的定义,shape表示维度
	#将变量初始化为满足正太分布的随机值,但如果随机出来的值偏离平均值超过2个标准差,那么这个数将会被重新随机
	weights = tf.get_variable("weights", shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
	
	#将当前变量的正则损失加入名字为losses的集合
	if regularizer != None:
		tf.add_to_collection('losses', regularizer(weights))
	
	return weights


#定义神经网络的前向传播过程
def inference(input_tensor, regularizer):
	#声明第一层神经网络的变量并完成前向传播的过程
	with tf.variable_scope('layer1'):
		weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
		biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0))
		layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases)

	#声明第二层神经网络的变量并完成前向传播的过程
	with tf.variable_scope('layer2'):
		weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
		biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
		layer2 = tf.matmul(layer1, weights) + biases

	return layer2

#coding:utf-8
#mnist_train.py

import os

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

#加载 mnist_inference.py 中定义的常量和前向传播的函数
import mnist_inference

#配置神经网络参数
BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARAZTION_RATE = 0.0001
TRAINING_STEPS = 9001
MOVING_AVERAGE_DECAY = 0.99


#模型保存的路径和文件名
MODEL_SAVE_PATH = "/home/sun/AI/DNN/handWrite2/model"
MODEL_NAME = "model.ckpt"

def train(mnist):
	x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
	y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y_input')
	
	#返回regularizer函数,L2正则化项的值
	regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
	#使用mnist_inference.py中定义的前向传播过程
	y=mnist_inference.inference(x,regularizer)
	#定义step为0
	global_step = tf.Variable(0, trainable=False)
	
	#滑动平均,由衰减率和步数确定
	variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
	#可训练参数的集合
	variables_averages_op = variable_averages.apply(tf.trainable_variables())
		
	#交叉熵损失 函数
	cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(y, tf.argmax(y_, 1))
	#交叉熵平均值
	cross_entropy_mean = tf.reduce_mean(cross_entropy)
	#总损失
	loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
		
	#学习率(衰减)
	learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE, global_step, mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY)
	#定义了反向传播的优化方法,之后通过sess.run(train_step)就可以对所有GraphKeys.TRAINABLE_VARIABLES集合中的变量进行优化,似的当前batch下损失函数更小
	train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
	#更新参数
	with tf.control_dependencies([train_step, variables_averages_op]):
		train_op = tf.no_op(name='train')

	saver = tf.train.Saver()
	
	#初始会话,并开始训练过程
	with tf.Session() as sess:
		tf.initialize_all_variables().run()
		
		for i in range(TRAINING_STEPS):
			xs, ys = mnist.train.next_batch(BATCH_SIZE)
			op, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})

			if i % 1000 == 0:
				print ("After %d training step(s), loss on training batch is %g." % (step, loss_value))
				saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)
	
def main(argv=None):
	mnist = input_data.read_data_sets("/home/sun/AI/DNN/handWrite2/data", one_hot=True)
	train(mnist)

#if __name__ == '__main__':
#	tf.app.run()
main()

#coding:utf-8
#mnist_eval.py

import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

import mnist_inference
import mnist_train

#每10秒加载一次最新的模型,并在测试数据上测试最新模型的正确率
EVAL_INTERVAL_SECS = 10

def evaluate(mnist):
	with tf.Graph().as_default() as g:
		#定义输入输出格式
		x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
		y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input')
		validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels}
		
		#计算前向传播结果,测试时不关心正则化损失的值,所以这里设为None
		y = mnist_inference.inference(x, None)
		
		correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
		accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

		variable_averages = tf.train.ExponentialMovingAverage(mnist_train.MOVING_AVERAGE_DECAY)
		variables_to_restore = variable_averages.variables_to_restore()
		saver = tf.train.Saver(variables_to_restore)

		while True:
			with tf.Session() as sess:
				ckpt = tf.train.get_checkpoint_state(mnist_train.MODEL_SAVE_PATH)
				print(ckpt.model_checkpoint_path)
				if ckpt and ckpt.model_checkpoint_path:
					#加载模型
					saver.restore(sess, ckpt.model_checkpoint_path)
					#通过文件名得到模型保存时迭代的轮数
					global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
					
					accuracy_score = sess.run(accuracy, feed_dict=validate_feed)
					print("After %s training step(s), validation accuracy = %g" % (global_step, accuracy_score))
				else:
					print('No checkpoint file found')
					return
			time.sleep(EVAL_INTERVAL_SECS)

def main(argv=None):
	mnist = input_data.read_data_sets("/home/sun/AI/DNN/handWrite2/data", one_hot=True)
	evaluate(mnist)

if __name__ == '__main__':
	tf.app.run()

你可能感兴趣的:(TensorFlow)