TSP问题(Traveling Salesman Problem)是数学领域中著名问题之一。假设有一个旅行商人要拜访N个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次(通过禁忌表),而且最后要回到原来出发的城市,要求路径的总和最小
蚁群算法(AG)是一种模拟蚂蚁觅食行为的模拟优化算法,首先使用在解决TSP(旅行商问题)上。
人工蚁群与真实蚁群对比:
相同点 | 不同点 |
---|---|
都是为了寻找最短路径问题 | 人工蚁群具有记忆功能 |
都存在个体间的信息交互问题 | 人工蚁群的选择并不盲目性 |
都采用根据当前的信息进行随机选择策略 | 人工蚂蚁生活在离散的时间环境中 |
代码部分:
蚁群算法实现核心有两点:1,蚂蚁如何选择下一个城市;2,城市间路径信息素如何更新。
% 计算城市之间的转移概率
for k = 1:length(allow)
P(k) = Tau(tabu(end),allow(k))^alpha * Eta(tabu(end),allow(k))^beta;
%等式的分子
End
P = P/sum(P); %上面等式的分母部分
在计算出来城市之间的转移概率之后还要用轮盘赌法的原因:
在得到剩下去城市概率,产生一个随机数,基于随机数决定去下面哪一个城市。例如:剩3个城市,概率为:0.1,0.2,0.7,累计概率为:0.1,0.3,0.7,产生一个随机数,随机数为0.21(介于0.1到0.3之间),则去城市2(偏向于选择最大的)。此过程则为轮盘赌,又可说其服从蚁群算法会优先去概率大的地方,但还是随机走。
原文:https://blog.csdn.net/Sue_qx/article/details/82149965
蚁群算法:
>> %%%蚁群算法解决TSP问题%%%%%%%
clear all; %清除所有变量
close all; %清图
m=50;% m 蚂蚁个数
Alpha=1; %%Alpha 表征信息素重要程度的参数
Beta=5; %Beta 表征启发式因子重要程度的参数
Rho=0.1; %%Rho 信息素蒸发系数
NC_max=200; %%最大迭代次数
Q=100; %%信息素增加强度系数
C=[1304 2312;3639 1315;4177 2244;3712 1399;3488 1535;3326 1556;3238 1229;4196 1004;4312 790;4386 570;3007 1970;2562 1756;2788 1491;2381 1676;1332 695;3715 1678;3918 2179;4061 2370;3780 2212;3676 2578;4029 2838;4263 2931;3429 1908;3507 2367;3394 2643;3439 3201;2935 3240;3140 3550;2545 2357;2778 2826;2370 2975]; %%31个省会坐标
%% 主要符号说明
%% C n个城市的坐标,n*2的矩阵
%% NC_max 最大迭代次数
%% m 蚂蚁个数
%% Alpha 表征信息素重要程度的参数
%% Beta 表征启发式因子重要程度的参数
%% Rho 信息素蒸发系数
%% R_best 各代最佳路线
%% L_best 各代最佳路线的长度
%% 第一步:变量初始化
n=size(C,1);%n表示问题的规模(城市个数) //求出城市的个数
D=zeros(n,n);%D表示完全图的赋权邻接矩阵 //用来生成n行n列的零
for i=1:n
for j=1:n
if i~=j % ~=相当于C中的!=,即不等于
D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5; % //D在这里表示的是距离(一个城市到 下一个城市) 当执行一次i,执行n次j时表示的是第一个城市到其他城市的距离。
else
D(i,j)=eps; %i=j时不计算,应该为0,但后面的启发因子要取倒数,用eps(浮点相对精度)表示 意思是同一个省会城市之间的距离为零
end
D(j,i)=D(i,j); %对称矩阵
end
end
Eta=1./D; %Eta为启发因子,这里设为距离的倒数
Tau=ones(n,n); %Tau为信息素矩阵 //矩阵n*n全部赋值为1
Tabu=zeros(m,n);%存储并记录路径的生成 //矩阵n*n全部赋值为0
NC=1; %迭代计数器,记录迭代次数
R_best=zeros(NC_max,n); %各代最佳路线
L_best=inf.*ones(NC_max,1); %各代最佳路线的长度 //Inf*ones(1,N) 1、inf代表正无穷,是一个数字 2、ones(1,N)代表建立一个矩阵,这个矩阵元素全是1,矩阵的尺寸是1行×N列
% 3、两者相乘的结果为一个矩阵,该矩阵尺寸也为1行×N列,只不过元素全为正无穷inf
L_ave=zeros(NC_max,1); %各代路线的平均长度 //比如a=zeros(3,5);就是创建一个3行5列的0矩阵
while NC<=NC_max %停止条件之一:达到最大迭代次数,停止
%%第二步:将M只蚂蚁放到N个城市上
Randpos=[]; %随即存取
for i=1:(ceil(m/n)) % //ceil 是向离它最近的大整数圆整. 如a = [-1.9, -0.2, 3.4, 5.6, 7, 2.4+3.6i] 圆整后:a=[-1,0, 4, 6, 7 ,3+4i]
Randpos=[Randpos,randperm(n)]; %//randperm的函数功能:随机打乱一个数字序列
end
Tabu(:,1)=(Randpos(1,1:m))';
%//蚂蚁重复城市的次数,比如5个蚂蚁放到4个城市,需要重复两遍才能放完蚂蚁,每次循环产生n个1---n的随机数,相当于随机n个城市,产生城市序列(城市序号出现的次数代表的是有几只蚂蚁在这座城市)
% 循环结束
% Tabu一句表示将m个蚂蚁随机,每个蚂蚁放到前面产生的城市序列中,每个蚂蚁一个城市,需要m个,所以提取前面1:m个序列
% '表示转置,没有多大用处,可能参与后面的计算方便。
% 我感觉如果m,n很大的话,你这样做会产生很大的浪费,计算很多的随机数,这样的话更好,一句就得:(如果变量Randpos后面没有用到的话,如果用到了,还要用你的程序)
%%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游
for j=2:n %所在城市不计算
for i=1:m %一只一只访问城市
visited=Tabu(i,1:(j-1)); %记录已访问的城市,避免重复访问
J=zeros(1,(n-j+1)); %待访问的城市
P=J; %待访问城市的选择概率分布
Jc=1;
for k=1:n
if length(find(visited==k))==0 %开始时置0
J(Jc)=k;
Jc=Jc+1; %访问的城市个数自加1
end
end
%下面计算待选城市的概率分布
for k=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
end
P=P/(sum(P)); %按概率原则选取下一个城市
Pcum=cumsum(P); %cumsum,元素累加即求和
Select=find(Pcum>=rand); %若计算的概率大于原来的就选择这条路线
to_visit=J(Select(1));
Tabu(i,j)=to_visit;
end
end
if NC>=2 % 迭代次数NC
Tabu(1,:)=R_best(NC-1,:);
end
%%第四步: 记录本次迭代最佳路线长度
L=zeros(m,1);%开始距离为0,m*1的列向量
for i=1:m
R=Tabu(i,:);
for j=1:(n-1)
L(i)=L(i)+D(R(j),R(j+1)); %原距离加上第j个城市到第j+1个城市的距离
end
L(i)=L(i)+D(R(1),R(n)); %一轮下来后走过的距离
end
L_best(NC)=min(L); %最佳距离取最小
pos=find(L==L_best(NC));
R_best(NC,:)=Tabu(pos(1),:);%此轮迭代后的最佳路线
L_ave(NC)=mean(L);%此轮迭代后的平均距离
NC=NC+1; %迭代继续
%%第五步:更新信息素
Delta_Tau=zeros(n,n); %开始时信息素为n*n的矩阵
for i=1:m
for j=1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i); %此次循环在路径(i,j)上的信息素增量
end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i); %此次循环在整个路径上的信息素增量
end
Tau=(1-Rho).*Tau+Delta_Tau; %考虑信息素挥发,更新后的信息素
%%第六步:禁忌表清零
Tabu=zeros(m,n); %%直到最大的迭代次数
end
%%第七步:输出结果
Pos=find(L_best==min(L_best)); %找到最佳路径(非0为真)
Shortest_Route=R_best(Pos(1),:) %最大迭代次数后最佳路径
Shortest_Length=L_best(Pos(1)) %最大迭代次数后最短距离
figure(1)
plot(L_best)
xlabel('迭代次数')
ylabel('目标函数值')
title('适应度进化曲线')
figure(2)
subplot(1,2,1) %绘制第一个子图形
%% subplot(m,n,p)生成m*n个子图,当前激活第p个子图
%画路线图
%%============================================================
%% DrawRoute.m
%%画路线图
%%————————————————————————————
%% C Coordinate 节点坐标,由一个N*2的矩阵存储
%% R Route 路线
%%============================================================
N=length(R);
scatter(C(:,1),C(:,2));
hold on
%% scatter(X,Y) 中 X和Y是数据向量,以X中数据为横坐标,以Y中数据位纵坐标描绘散点图,点的形状默认使用圈
plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)],'g')
hold on
for ii=2:N
plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)],'g')
hold on
end
title('旅行商问题优化结果')
subplot(1,2,2) %绘制第二个子图
plot(L_best)
hold on %保持图形
plot(L_ave,'r')
title('平均距离和最短距离') %标题
MATLAB中cumsum函数问题参考链接:https://blog.csdn.net/weixin_43283397/article/details/99546762
以下两个代码均为转载,欢迎访问原博客
蚁群算法Python3可运行代码
蚁群算法原理及其实现(python)
import numpy as np
import matplotlib.pyplot as plt
import pylab
coordinates = np.array([[565.0, 575.0], [25.0, 185.0], [345.0, 750.0], [945.0, 685.0], [845.0, 655.0],
[880.0, 660.0], [25.0, 230.0], [525.0, 1000.0], [580.0, 1175.0], [650.0, 1130.0],
[1605.0, 620.0], [1220.0, 580.0], [1465.0, 200.0], [1530.0, 5.0], [845.0, 680.0],
[725.0, 370.0], [145.0, 665.0], [415.0, 635.0], [510.0, 875.0], [560.0, 365.0],
[300.0, 465.0], [520.0, 585.0], [480.0, 415.0], [835.0, 625.0], [975.0, 580.0],
[1215.0, 245.0], [1320.0, 315.0], [1250.0, 400.0], [660.0, 180.0], [410.0, 250.0],
[420.0, 555.0], [575.0, 665.0], [1150.0, 1160.0], [700.0, 580.0], [685.0, 595.0],
[685.0, 610.0], [770.0, 610.0], [795.0, 645.0], [720.0, 635.0], [760.0, 650.0],
[475.0, 960.0], [95.0, 260.0], [875.0, 920.0], [700.0, 500.0], [555.0, 815.0],
[830.0, 485.0], [1170.0, 65.0], [830.0, 610.0], [605.0, 625.0], [595.0, 360.0],
[1340.0, 725.0], [1740.0, 245.0]])
def getdistmat(coordinates):
num = coordinates.shape[0]
distmat = np.zeros((52, 52))
for i in range(num):
for j in range(i, num):
distmat[i][j] = distmat[j][i] = np.linalg.norm(coordinates[i] - coordinates[j])
return distmat
distmat = getdistmat(coordinates)
numant = 40 # 蚂蚁个数
numcity = coordinates.shape[0] # 城市个数
alpha = 1 # 信息素重要程度因子
beta = 5 # 启发函数重要程度因子
rho = 0.1 # 信息素的挥发速度
Q = 1
iter = 0
itermax = 250
etatable = 1.0 / (distmat + np.diag([1e10] * numcity)) # 启发函数矩阵,表示蚂蚁从城市i转移到矩阵j的期望程度
pheromonetable = np.ones((numcity, numcity)) # 信息素矩阵
pathtable = np.zeros((numant, numcity)).astype(int) # 路径记录表
distmat = getdistmat(coordinates) # 城市的距离矩阵
lengthaver = np.zeros(itermax) # 各代路径的平均长度
lengthbest = np.zeros(itermax) # 各代及其之前遇到的最佳路径长度
pathbest = np.zeros((itermax, numcity)) # 各代及其之前遇到的最佳路径长度
while iter < itermax:
# 随机产生各个蚂蚁的起点城市
if numant <= numcity: # 城市数比蚂蚁数多
pathtable[:, 0] = np.random.permutation(range(0, numcity))[:numant]
else: # 蚂蚁数比城市数多,需要补足
pathtable[:numcity, 0] = np.random.permutation(range(0, numcity))[:]
pathtable[numcity:, 0] = np.random.permutation(range(0, numcity))[:numant - numcity]
length = np.zeros(numant) # 计算各个蚂蚁的路径距离
for i in range(numant):
visiting = pathtable[i, 0] # 当前所在的城市
unvisited = set(range(numcity)) # 未访问的城市,以集合的形式存储{}
unvisited.remove(visiting) # 删除元素;利用集合的remove方法删除存储的数据内容
for j in range(1, numcity): # 循环numcity-1次,访问剩余的numcity-1个城市
# 每次用轮盘法选择下一个要访问的城市
listunvisited = list(unvisited)
probtrans = np.zeros(len(listunvisited))
for k in range(len(listunvisited)):
probtrans[k] = np.power(pheromonetable[visiting][listunvisited[k]], alpha) \
* np.power(etatable[visiting][listunvisited[k]], alpha)
cumsumprobtrans = (probtrans / sum(probtrans)).cumsum()
cumsumprobtrans -= np.random.rand()
k = listunvisited[(np.where(cumsumprobtrans > 0)[0])[0]] # python3中原代码运行bug,类型问题;鉴于此特找到其他方法
# 通过where()方法寻找矩阵大于0的元素的索引并返回ndarray类型,然后接着载使用[0]提取其中的元素,用作listunvisited列表中
# 元素的提取(也就是下一轮选的城市)
pathtable[i, j] = k # 添加到路径表中(也就是蚂蚁走过的路径)
unvisited.remove(k) # 然后在为访问城市set中remove()删除掉该城市
length[i] += distmat[visiting][k]
visiting = k
length[i] += distmat[visiting][pathtable[i, 0]] # 蚂蚁的路径距离包括最后一个城市和第一个城市的距离
# 包含所有蚂蚁的一个迭代结束后,统计本次迭代的若干统计参数
lengthaver[iter] = length.mean()
if iter == 0:
lengthbest[iter] = length.min()
pathbest[iter] = pathtable[length.argmin()].copy()
else:
if length.min() > lengthbest[iter - 1]:
lengthbest[iter] = lengthbest[iter - 1]
pathbest[iter] = pathbest[iter - 1].copy()
else:
lengthbest[iter] = length.min()
pathbest[iter] = pathtable[length.argmin()].copy()
# 更新信息素
changepheromonetable = np.zeros((numcity, numcity))
for i in range(numant):
for j in range(numcity - 1):
changepheromonetable[pathtable[i, j]][pathtable[i, j + 1]] += Q / distmat[pathtable[i, j]][
pathtable[i, j + 1]] # 计算信息素增量
changepheromonetable[pathtable[i, j + 1]][pathtable[i, 0]] += Q / distmat[pathtable[i, j + 1]][pathtable[i, 0]]
pheromonetable = (1 - rho) * pheromonetable + changepheromonetable # 计算信息素公式
iter += 1 # 迭代次数指示器+1
print("iter:", iter)
# 做出平均路径长度和最优路径长度
fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(12, 10))
axes[0].plot(lengthaver, 'k', marker=u'')
axes[0].set_title('Average Length')
axes[0].set_xlabel(u'iteration')
axes[1].plot(lengthbest, 'k', marker=u'')
axes[1].set_title('Best Length')
axes[1].set_xlabel(u'iteration')
fig.savefig('average_best.png', dpi=500, bbox_inches='tight')
plt.show()
# 作出找到的最优路径图
bestpath = pathbest[-1]
plt.plot(coordinates[:, 0], coordinates[:, 1], 'r.', marker=u'$\cdot$')
plt.xlim([-100, 2000])
plt.ylim([-100, 1500])
for i in range(numcity - 1):
m = int(bestpath[i])
n = int(bestpath[i + 1])
plt.plot([coordinates[m][0], coordinates[n][0]], [coordinates[m][1], coordinates[n][1]], 'k')
plt.plot([coordinates[int(bestpath[0])][0],coordinates[int(n)][0]],[coordinates[int(bestpath[0])][1],coordinates[int(n)][1]],'b')
ax = plt.gca()
ax.set_title("Best Path")
ax.set_xlabel('X axis')
ax.set_ylabel('Y_axis')
plt.savefig('best path.png', dpi=500, bbox_inches='tight')
plt.show()
这篇博客里的代码好玩
# -*- coding: utf-8 -*-
import random
import copy
import time
import sys
import math
import tkinter #//GUI模块
import threading
from functools import reduce
# 参数
'''
ALPHA:信息启发因子,值越大,则蚂蚁选择之前走过的路径可能性就越大
,值越小,则蚁群搜索范围就会减少,容易陷入局部最优
BETA:Beta值越大,蚁群越就容易选择局部较短路径,这时算法收敛速度会
加快,但是随机性不高,容易得到局部的相对最优
'''
(ALPHA, BETA, RHO, Q) = (1.0,2.0,0.5,100.0)
# 城市数,蚁群
(city_num, ant_num) = (50,50)
distance_x = [
178,272,176,171,650,499,267,703,408,437,491,74,532,
416,626,42,271,359,163,508,229,576,147,560,35,714,
757,517,64,314,675,690,391,628,87,240,705,699,258,
428,614,36,360,482,666,597,209,201,492,294]
distance_y = [
170,395,198,151,242,556,57,401,305,421,267,105,525,
381,244,330,395,169,141,380,153,442,528,329,232,48,
498,265,343,120,165,50,433,63,491,275,348,222,288,
490,213,524,244,114,104,552,70,425,227,331]
#城市距离和信息素
distance_graph = [ [0.0 for col in range(city_num)] for raw in range(city_num)]
pheromone_graph = [ [1.0 for col in range(city_num)] for raw in range(city_num)]
#----------- 蚂蚁 -----------
class Ant(object):
# 初始化
def __init__(self,ID):
self.ID = ID # ID
self.__clean_data() # 随机初始化出生点
# 初始数据
def __clean_data(self):
self.path = [] # 当前蚂蚁的路径
self.total_distance = 0.0 # 当前路径的总距离
self.move_count = 0 # 移动次数
self.current_city = -1 # 当前停留的城市
self.open_table_city = [True for i in range(city_num)] # 探索城市的状态
city_index = random.randint(0,city_num-1) # 随机初始出生点
self.current_city = city_index
self.path.append(city_index)
self.open_table_city[city_index] = False
self.move_count = 1
# 选择下一个城市
def __choice_next_city(self):
next_city = -1
select_citys_prob = [0.0 for i in range(city_num)] #存储去下个城市的概率
total_prob = 0.0
# 获取去下一个城市的概率
for i in range(city_num):
if self.open_table_city[i]:
try :
# 计算概率:与信息素浓度成正比,与距离成反比
select_citys_prob[i] = pow(pheromone_graph[self.current_city][i], ALPHA) * pow((1.0/distance_graph[self.current_city][i]), BETA)
total_prob += select_citys_prob[i]
except ZeroDivisionError as e:
print ('Ant ID: {ID}, current city: {current}, target city: {target}'.format(ID = self.ID, current = self.current_city, target = i))
sys.exit(1)
# 轮盘选择城市
if total_prob > 0.0:
# 产生一个随机概率,0.0-total_prob
temp_prob = random.uniform(0.0, total_prob)
for i in range(city_num):
if self.open_table_city[i]:
# 轮次相减
temp_prob -= select_citys_prob[i]
if temp_prob < 0.0:
next_city = i
break
# 未从概率产生,顺序选择一个未访问城市
# if next_city == -1:
# for i in range(city_num):
# if self.open_table_city[i]:
# next_city = i
# break
if (next_city == -1):
next_city = random.randint(0, city_num - 1)
while ((self.open_table_city[next_city]) == False): # if==False,说明已经遍历过了
next_city = random.randint(0, city_num - 1)
# 返回下一个城市序号
return next_city
# 计算路径总距离
def __cal_total_distance(self):
temp_distance = 0.0
for i in range(1, city_num):
start, end = self.path[i], self.path[i-1]
temp_distance += distance_graph[start][end]
# 回路
end = self.path[0]
temp_distance += distance_graph[start][end]
self.total_distance = temp_distance
# 移动操作
def __move(self, next_city):
self.path.append(next_city)
self.open_table_city[next_city] = False
self.total_distance += distance_graph[self.current_city][next_city]
self.current_city = next_city
self.move_count += 1
# 搜索路径
def search_path(self):
# 初始化数据
self.__clean_data()
# 搜素路径,遍历完所有城市为止
while self.move_count < city_num:
# 移动到下一个城市
next_city = self.__choice_next_city()
self.__move(next_city)
# 计算路径总长度
self.__cal_total_distance()
#----------- TSP问题 -----------
class TSP(object):
def __init__(self, root, width = 800, height = 600, n = city_num):
# 创建画布
self.root = root
self.width = width
self.height = height
# 城市数目初始化为city_num
self.n = n
# tkinter.Canvas
self.canvas = tkinter.Canvas(
root,
width = self.width,
height = self.height,
bg = "#EBEBEB", # 背景白色
xscrollincrement = 1,
yscrollincrement = 1
)
self.canvas.pack(expand = tkinter.YES, fill = tkinter.BOTH)
self.title("TSP蚁群算法(n:初始化 e:开始搜索 s:停止搜索 q:退出程序)")
self.__r = 5
self.__lock = threading.RLock() # 线程锁
self.__bindEvents()
self.new()
# 计算城市之间的距离
for i in range(city_num):
for j in range(city_num):
temp_distance = pow((distance_x[i] - distance_x[j]), 2) + pow((distance_y[i] - distance_y[j]), 2)
temp_distance = pow(temp_distance, 0.5)
distance_graph[i][j] =float(int(temp_distance + 0.5))
# 按键响应程序
def __bindEvents(self):
self.root.bind("q", self.quite) # 退出程序
self.root.bind("n", self.new) # 初始化
self.root.bind("e", self.search_path) # 开始搜索
self.root.bind("s", self.stop) # 停止搜索
# 更改标题
def title(self, s):
self.root.title(s)
# 初始化
def new(self, evt = None):
# 停止线程
self.__lock.acquire()
self.__running = False
self.__lock.release()
self.clear() # 清除信息
self.nodes = [] # 节点坐标
self.nodes2 = [] # 节点对象
# 初始化城市节点
for i in range(len(distance_x)):
# 在画布上随机初始坐标
x = distance_x[i]
y = distance_y[i]
self.nodes.append((x, y))
# 生成节点椭圆,半径为self.__r
node = self.canvas.create_oval(x - self.__r,
y - self.__r, x + self.__r, y + self.__r,
fill = "#ff0000", # 填充红色
outline = "#000000", # 轮廓白色
tags = "node",
)
self.nodes2.append(node)
# 显示坐标
self.canvas.create_text(x,y-10, # 使用create_text方法在坐标(302,77)处绘制文字
text = '('+str(x)+','+str(y)+')', # 所绘制文字的内容
fill = 'black' # 所绘制文字的颜色为灰色
)
# 顺序连接城市
#self.line(range(city_num))
# 初始城市之间的距离和信息素
for i in range(city_num):
for j in range(city_num):
pheromone_graph[i][j] = 1.0
self.ants = [Ant(ID) for ID in range(ant_num)] # 初始蚁群
self.best_ant = Ant(-1) # 初始最优解
self.best_ant.total_distance = 1 << 31 # 初始最大距离
self.iter = 1 # 初始化迭代次数
# 将节点按order顺序连线
def line(self, order):
# 删除原线
self.canvas.delete("line")
def line2(i1, i2):
p1, p2 = self.nodes[i1], self.nodes[i2]
self.canvas.create_line(p1, p2, fill = "#000000", tags = "line")
return i2
# order[-1]为初始值
reduce(line2, order, order[-1])
# 清除画布
def clear(self):
for item in self.canvas.find_all():
self.canvas.delete(item)
# 退出程序
def quite(self, evt):
self.__lock.acquire()
self.__running = False
self.__lock.release()
self.root.destroy()
print (u"\n程序已退出...")
sys.exit()
# 停止搜索
def stop(self, evt):
self.__lock.acquire()
self.__running = False
self.__lock.release()
# 开始搜索
def search_path(self, evt = None):
# 开启线程
self.__lock.acquire()
self.__running = True
self.__lock.release()
while self.__running:
# 遍历每一只蚂蚁
for ant in self.ants:
# 搜索一条路径
ant.search_path()
# 与当前最优蚂蚁比较
if ant.total_distance < self.best_ant.total_distance:
# 更新最优解
self.best_ant = copy.deepcopy(ant)
# 更新信息素
self.__update_pheromone_gragh()
print (u"迭代次数:",self.iter,u"最佳路径总距离:",int(self.best_ant.total_distance))
# 连线
self.line(self.best_ant.path)
# 设置标题
self.title("TSP蚁群算法(n:随机初始 e:开始搜索 s:停止搜索 q:退出程序) 迭代次数: %d" % self.iter)
# 更新画布
self.canvas.update()
self.iter += 1
# 更新信息素
def __update_pheromone_gragh(self):
# 获取每只蚂蚁在其路径上留下的信息素
temp_pheromone = [[0.0 for col in range(city_num)] for raw in range(city_num)]
for ant in self.ants:
for i in range(1,city_num):
start, end = ant.path[i-1], ant.path[i]
# 在路径上的每两个相邻城市间留下信息素,与路径总距离反比
temp_pheromone[start][end] += Q / ant.total_distance
temp_pheromone[end][start] = temp_pheromone[start][end]
# 更新所有城市之间的信息素,旧信息素衰减加上新迭代信息素
for i in range(city_num):
for j in range(city_num):
pheromone_graph[i][j] = pheromone_graph[i][j] * RHO + temp_pheromone[i][j]
# 主循环
def mainloop(self):
self.root.mainloop()
#----------- 程序的入口处 -----------
if __name__ == '__main__':
print (u"""
--------------------------------------------------------
程序:蚁群算法解决TPS问题程序
作者:许彬
日期:2015-12-10
语言:Python 2.7
说明:转载程序,大家可访问原博客
--------------------------------------------------------
""")
TSP(tkinter.Tk()).mainloop()