蚁群算法 matlab—python

TSP问题(Traveling Salesman Problem)是数学领域中著名问题之一。假设有一个旅行商人要拜访N个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次(通过禁忌表),而且最后要回到原来出发的城市,要求路径的总和最小

蚁群算法(AG)是一种模拟蚂蚁觅食行为的模拟优化算法,首先使用在解决TSP(旅行商问题)上。

人工蚁群与真实蚁群对比:

相同点 不同点
都是为了寻找最短路径问题 人工蚁群具有记忆功能
都存在个体间的信息交互问题 人工蚁群的选择并不盲目性
都采用根据当前的信息进行随机选择策略 人工蚂蚁生活在离散的时间环境中

代码部分:
蚁群算法实现核心有两点:1,蚂蚁如何选择下一个城市;2,城市间路径信息素如何更新。

a. 计算城市之间的转移概率:
蚁群算法 matlab—python_第1张图片

% 计算城市之间的转移概率
for k = 1:length(allow)
P(k) = Tau(tabu(end),allow(k))^alpha * Eta(tabu(end),allow(k))^beta;
%等式的分子
End
P = P/sum(P);  %上面等式的分母部分

在计算出来城市之间的转移概率之后还要用轮盘赌法的原因:
在得到剩下去城市概率,产生一个随机数,基于随机数决定去下面哪一个城市。例如:剩3个城市,概率为:0.1,0.2,0.7,累计概率为:0.1,0.3,0.7,产生一个随机数,随机数为0.21(介于0.1到0.3之间),则去城市2(偏向于选择最大的)。此过程则为轮盘赌,又可说其服从蚁群算法会优先去概率大的地方,但还是随机走。
原文:https://blog.csdn.net/Sue_qx/article/details/82149965

蚁群算法:

>> %%%蚁群算法解决TSP问题%%%%%%%

clear all; %清除所有变量
close all; %清图
m=50;% m 蚂蚁个数
Alpha=1; %%Alpha 表征信息素重要程度的参数
Beta=5; %Beta 表征启发式因子重要程度的参数
Rho=0.1; %%Rho 信息素蒸发系数
NC_max=200; %%最大迭代次数
Q=100; %%信息素增加强度系数
C=[1304 2312;3639 1315;4177 2244;3712 1399;3488 1535;3326 1556;3238 1229;4196 1004;4312 790;4386 570;3007 1970;2562 1756;2788 1491;2381 1676;1332 695;3715 1678;3918 2179;4061 2370;3780 2212;3676 2578;4029 2838;4263 2931;3429 1908;3507 2367;3394 2643;3439 3201;2935 3240;3140 3550;2545 2357;2778 2826;2370 2975];                %%31个省会坐标
%% 主要符号说明
%% C n个城市的坐标,n*2的矩阵
%% NC_max 最大迭代次数
%% m 蚂蚁个数
%% Alpha 表征信息素重要程度的参数
%% Beta 表征启发式因子重要程度的参数
%% Rho 信息素蒸发系数
%% R_best 各代最佳路线
%% L_best 各代最佳路线的长度

%% 第一步:变量初始化
n=size(C,1);%n表示问题的规模(城市个数)         //求出城市的个数
D=zeros(n,n);%D表示完全图的赋权邻接矩阵        //用来生成n行n列的零
for i=1:n
     for j=1:n
         if i~=j % ~=相当于C中的!=,即不等于
            D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;    % //D在这里表示的是距离(一个城市到 下一个城市)  当执行一次i,执行n次j时表示的是第一个城市到其他城市的距离。
         else 
            D(i,j)=eps; %i=j时不计算,应该为0,但后面的启发因子要取倒数,用eps(浮点相对精度)表示                           意思是同一个省会城市之间的距离为零
         end
         D(j,i)=D(i,j); %对称矩阵
     end
end
Eta=1./D; %Eta为启发因子,这里设为距离的倒数
Tau=ones(n,n); %Tau为信息素矩阵                //矩阵n*n全部赋值为1
Tabu=zeros(m,n);%存储并记录路径的生成          //矩阵n*n全部赋值为0
NC=1; %迭代计数器,记录迭代次数
R_best=zeros(NC_max,n); %各代最佳路线
L_best=inf.*ones(NC_max,1); %各代最佳路线的长度   //Inf*ones(1,N) 1、inf代表正无穷,是一个数字                        2、ones(1,N)代表建立一个矩阵,这个矩阵元素全是1,矩阵的尺寸是1行×N列
                      % 3、两者相乘的结果为一个矩阵,该矩阵尺寸也为1行×N列,只不过元素全为正无穷inf 
L_ave=zeros(NC_max,1); %各代路线的平均长度     //比如a=zeros(3,5);就是创建一个3行5列的0矩阵


while NC<=NC_max %停止条件之一:达到最大迭代次数,停止
  
%%第二步:将M只蚂蚁放到N个城市上
   Randpos=[]; %随即存取
   for i=1:(ceil(m/n))                        % //ceil 是向离它最近的大整数圆整. 如a = [-1.9, -0.2, 3.4, 5.6, 7, 2.4+3.6i]  圆整后:a=[-1,0, 4, 6, 7 ,3+4i]
       Randpos=[Randpos,randperm(n)];          %//randperm的函数功能:随机打乱一个数字序列
   end
   Tabu(:,1)=(Randpos(1,1:m))';

%//蚂蚁重复城市的次数,比如5个蚂蚁放到4个城市,需要重复两遍才能放完蚂蚁,每次循环产生n个1---n的随机数,相当于随机n个城市,产生城市序列(城市序号出现的次数代表的是有几只蚂蚁在这座城市)
% 循环结束
% Tabu一句表示将m个蚂蚁随机,每个蚂蚁放到前面产生的城市序列中,每个蚂蚁一个城市,需要m个,所以提取前面1:m个序列                         
% '表示转置,没有多大用处,可能参与后面的计算方便。
% 我感觉如果m,n很大的话,你这样做会产生很大的浪费,计算很多的随机数,这样的话更好,一句就得:(如果变量Randpos后面没有用到的话,如果用到了,还要用你的程序)




    
     %%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游
     for j=2:n %所在城市不计算
         for i=1:m  %一只一只访问城市
             visited=Tabu(i,1:(j-1)); %记录已访问的城市,避免重复访问
             J=zeros(1,(n-j+1)); %待访问的城市
             P=J; %待访问城市的选择概率分布
             Jc=1; 
             for k=1:n
               if length(find(visited==k))==0 %开始时置0
                    J(Jc)=k;
                    Jc=Jc+1;   %访问的城市个数自加1
               end
             end
             %下面计算待选城市的概率分布
             for k=1:length(J)  
                P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);  
             end  
             P=P/(sum(P)); %按概率原则选取下一个城市
             Pcum=cumsum(P); %cumsum,元素累加即求和
             Select=find(Pcum>=rand); %若计算的概率大于原来的就选择这条路线
             to_visit=J(Select(1));
             Tabu(i,j)=to_visit;
          end
      end
if NC>=2  % 迭代次数NC
   Tabu(1,:)=R_best(NC-1,:);
end

%%第四步: 记录本次迭代最佳路线长度
L=zeros(m,1);%开始距离为0,m*1的列向量
for i=1:m
   R=Tabu(i,:);
   for j=1:(n-1)
      L(i)=L(i)+D(R(j),R(j+1)); %原距离加上第j个城市到第j+1个城市的距离
   end
      L(i)=L(i)+D(R(1),R(n));   %一轮下来后走过的距离
   end
L_best(NC)=min(L);  %最佳距离取最小
pos=find(L==L_best(NC));
R_best(NC,:)=Tabu(pos(1),:);%此轮迭代后的最佳路线
L_ave(NC)=mean(L);%此轮迭代后的平均距离
NC=NC+1; %迭代继续


%%第五步:更新信息素
Delta_Tau=zeros(n,n); %开始时信息素为n*n的矩阵
for i=1:m
  for j=1:(n-1)
    Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i); %此次循环在路径(i,j)上的信息素增量 
  end
  Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i); %此次循环在整个路径上的信息素增量
end

Tau=(1-Rho).*Tau+Delta_Tau; %考虑信息素挥发,更新后的信息素


%%第六步:禁忌表清零
Tabu=zeros(m,n);  %%直到最大的迭代次数
end

%%第七步:输出结果
Pos=find(L_best==min(L_best)); %找到最佳路径(非0为真)
Shortest_Route=R_best(Pos(1),:) %最大迭代次数后最佳路径
Shortest_Length=L_best(Pos(1)) %最大迭代次数后最短距离

figure(1)
plot(L_best)
xlabel('迭代次数')
ylabel('目标函数值')
title('适应度进化曲线')

figure(2)
subplot(1,2,1)    %绘制第一个子图形
%% subplot(m,n,p)生成m*n个子图,当前激活第p个子图
%画路线图
%%============================================================
%% DrawRoute.m
%%画路线图
%%————————————————————————————
%% C Coordinate 节点坐标,由一个N*2的矩阵存储
%% R Route 路线
%%============================================================
N=length(R);
scatter(C(:,1),C(:,2));
hold on
%% scatter(X,Y) 中 X和Y是数据向量,以X中数据为横坐标,以Y中数据位纵坐标描绘散点图,点的形状默认使用圈

plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)],'g')
hold on

for ii=2:N
plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)],'g')
hold on 
end

title('旅行商问题优化结果')
 
subplot(1,2,2)  %绘制第二个子图
plot(L_best)
hold on  %保持图形
plot(L_ave,'r')
title('平均距离和最短距离')   %标题

蚁群算法 matlab—python_第2张图片
蚁群算法 matlab—python_第3张图片

MATLAB中cumsum函数问题参考链接:https://blog.csdn.net/weixin_43283397/article/details/99546762


以下两个代码均为转载,欢迎访问原博客
蚁群算法Python3可运行代码
蚁群算法原理及其实现(python)


import numpy as np
import matplotlib.pyplot as plt
import pylab

coordinates = np.array([[565.0, 575.0], [25.0, 185.0], [345.0, 750.0], [945.0, 685.0], [845.0, 655.0],
                        [880.0, 660.0], [25.0, 230.0], [525.0, 1000.0], [580.0, 1175.0], [650.0, 1130.0],
                        [1605.0, 620.0], [1220.0, 580.0], [1465.0, 200.0], [1530.0, 5.0], [845.0, 680.0],
                        [725.0, 370.0], [145.0, 665.0], [415.0, 635.0], [510.0, 875.0], [560.0, 365.0],
                        [300.0, 465.0], [520.0, 585.0], [480.0, 415.0], [835.0, 625.0], [975.0, 580.0],
                        [1215.0, 245.0], [1320.0, 315.0], [1250.0, 400.0], [660.0, 180.0], [410.0, 250.0],
                        [420.0, 555.0], [575.0, 665.0], [1150.0, 1160.0], [700.0, 580.0], [685.0, 595.0],
                        [685.0, 610.0], [770.0, 610.0], [795.0, 645.0], [720.0, 635.0], [760.0, 650.0],
                        [475.0, 960.0], [95.0, 260.0], [875.0, 920.0], [700.0, 500.0], [555.0, 815.0],
                        [830.0, 485.0], [1170.0, 65.0], [830.0, 610.0], [605.0, 625.0], [595.0, 360.0],
                        [1340.0, 725.0], [1740.0, 245.0]])


def getdistmat(coordinates):
    num = coordinates.shape[0]
    distmat = np.zeros((52, 52))
    for i in range(num):
        for j in range(i, num):
            distmat[i][j] = distmat[j][i] = np.linalg.norm(coordinates[i] - coordinates[j])
    return distmat


distmat = getdistmat(coordinates)
numant = 40  # 蚂蚁个数
numcity = coordinates.shape[0]  # 城市个数
alpha = 1  # 信息素重要程度因子
beta = 5  # 启发函数重要程度因子
rho = 0.1  # 信息素的挥发速度
Q = 1
iter = 0
itermax = 250
etatable = 1.0 / (distmat + np.diag([1e10] * numcity))  # 启发函数矩阵,表示蚂蚁从城市i转移到矩阵j的期望程度
pheromonetable = np.ones((numcity, numcity))  # 信息素矩阵
pathtable = np.zeros((numant, numcity)).astype(int)  # 路径记录表
distmat = getdistmat(coordinates)  # 城市的距离矩阵
lengthaver = np.zeros(itermax)  # 各代路径的平均长度
lengthbest = np.zeros(itermax)  # 各代及其之前遇到的最佳路径长度
pathbest = np.zeros((itermax, numcity))  # 各代及其之前遇到的最佳路径长度

while iter < itermax:
    # 随机产生各个蚂蚁的起点城市
    if numant <= numcity:  # 城市数比蚂蚁数多
        pathtable[:, 0] = np.random.permutation(range(0, numcity))[:numant]
    else:  # 蚂蚁数比城市数多,需要补足
        pathtable[:numcity, 0] = np.random.permutation(range(0, numcity))[:]
        pathtable[numcity:, 0] = np.random.permutation(range(0, numcity))[:numant - numcity]
    length = np.zeros(numant)  # 计算各个蚂蚁的路径距离
    for i in range(numant):
        visiting = pathtable[i, 0]  # 当前所在的城市
        unvisited = set(range(numcity))  # 未访问的城市,以集合的形式存储{}
        unvisited.remove(visiting)  # 删除元素;利用集合的remove方法删除存储的数据内容
        for j in range(1, numcity):  # 循环numcity-1次,访问剩余的numcity-1个城市
            # 每次用轮盘法选择下一个要访问的城市
            listunvisited = list(unvisited)
            probtrans = np.zeros(len(listunvisited))
            for k in range(len(listunvisited)):
                probtrans[k] = np.power(pheromonetable[visiting][listunvisited[k]], alpha) \
                               * np.power(etatable[visiting][listunvisited[k]], alpha)
            cumsumprobtrans = (probtrans / sum(probtrans)).cumsum()
            cumsumprobtrans -= np.random.rand()
            k = listunvisited[(np.where(cumsumprobtrans > 0)[0])[0]]  # python3中原代码运行bug,类型问题;鉴于此特找到其他方法
            # 通过where()方法寻找矩阵大于0的元素的索引并返回ndarray类型,然后接着载使用[0]提取其中的元素,用作listunvisited列表中
            # 元素的提取(也就是下一轮选的城市)
            pathtable[i, j] = k  # 添加到路径表中(也就是蚂蚁走过的路径)
            unvisited.remove(k)  # 然后在为访问城市set中remove()删除掉该城市
            length[i] += distmat[visiting][k]
            visiting = k
        length[i] += distmat[visiting][pathtable[i, 0]]  # 蚂蚁的路径距离包括最后一个城市和第一个城市的距离
        # 包含所有蚂蚁的一个迭代结束后,统计本次迭代的若干统计参数
    lengthaver[iter] = length.mean()
    if iter == 0:
        lengthbest[iter] = length.min()
        pathbest[iter] = pathtable[length.argmin()].copy()
    else:
        if length.min() > lengthbest[iter - 1]:
            lengthbest[iter] = lengthbest[iter - 1]
            pathbest[iter] = pathbest[iter - 1].copy()
        else:
            lengthbest[iter] = length.min()
            pathbest[iter] = pathtable[length.argmin()].copy()
    # 更新信息素
    changepheromonetable = np.zeros((numcity, numcity))
    for i in range(numant):
        for j in range(numcity - 1):
            changepheromonetable[pathtable[i, j]][pathtable[i, j + 1]] += Q / distmat[pathtable[i, j]][
                pathtable[i, j + 1]]  # 计算信息素增量
        changepheromonetable[pathtable[i, j + 1]][pathtable[i, 0]] += Q / distmat[pathtable[i, j + 1]][pathtable[i, 0]]
    pheromonetable = (1 - rho) * pheromonetable + changepheromonetable  # 计算信息素公式
    iter += 1  # 迭代次数指示器+1
    print("iter:", iter)

# 做出平均路径长度和最优路径长度
fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(12, 10))
axes[0].plot(lengthaver, 'k', marker=u'')
axes[0].set_title('Average Length')
axes[0].set_xlabel(u'iteration')

axes[1].plot(lengthbest, 'k', marker=u'')
axes[1].set_title('Best Length')
axes[1].set_xlabel(u'iteration')
fig.savefig('average_best.png', dpi=500, bbox_inches='tight')
plt.show()

# 作出找到的最优路径图
bestpath = pathbest[-1]
plt.plot(coordinates[:, 0], coordinates[:, 1], 'r.', marker=u'$\cdot$')
plt.xlim([-100, 2000])
plt.ylim([-100, 1500])

for i in range(numcity - 1):
    m = int(bestpath[i])
    n = int(bestpath[i + 1])
    plt.plot([coordinates[m][0], coordinates[n][0]], [coordinates[m][1], coordinates[n][1]], 'k')
plt.plot([coordinates[int(bestpath[0])][0],coordinates[int(n)][0]],[coordinates[int(bestpath[0])][1],coordinates[int(n)][1]],'b')
ax = plt.gca()
ax.set_title("Best Path")
ax.set_xlabel('X axis')
ax.set_ylabel('Y_axis')

plt.savefig('best path.png', dpi=500, bbox_inches='tight')
plt.show()

这篇博客里的代码好玩

# -*- coding: utf-8 -*-
import random
import copy
import time
import sys
import math
import tkinter #//GUI模块
import threading
from functools import reduce


# 参数
'''
ALPHA:信息启发因子,值越大,则蚂蚁选择之前走过的路径可能性就越大
      ,值越小,则蚁群搜索范围就会减少,容易陷入局部最优
BETA:Beta值越大,蚁群越就容易选择局部较短路径,这时算法收敛速度会
     加快,但是随机性不高,容易得到局部的相对最优
'''
(ALPHA, BETA, RHO, Q) = (1.0,2.0,0.5,100.0)
# 城市数,蚁群
(city_num, ant_num) = (50,50)
distance_x = [
    178,272,176,171,650,499,267,703,408,437,491,74,532,
    416,626,42,271,359,163,508,229,576,147,560,35,714,
    757,517,64,314,675,690,391,628,87,240,705,699,258,
    428,614,36,360,482,666,597,209,201,492,294]
distance_y = [
    170,395,198,151,242,556,57,401,305,421,267,105,525,
    381,244,330,395,169,141,380,153,442,528,329,232,48,
    498,265,343,120,165,50,433,63,491,275,348,222,288,
    490,213,524,244,114,104,552,70,425,227,331]
#城市距离和信息素
distance_graph = [ [0.0 for col in range(city_num)] for raw in range(city_num)]
pheromone_graph = [ [1.0 for col in range(city_num)] for raw in range(city_num)]



#----------- 蚂蚁 -----------
class Ant(object):

    # 初始化
    def __init__(self,ID):

        self.ID = ID                 # ID
        self.__clean_data()          # 随机初始化出生点

    # 初始数据
    def __clean_data(self):

        self.path = []               # 当前蚂蚁的路径
        self.total_distance = 0.0    # 当前路径的总距离
        self.move_count = 0          # 移动次数
        self.current_city = -1       # 当前停留的城市
        self.open_table_city = [True for i in range(city_num)] # 探索城市的状态

        city_index = random.randint(0,city_num-1) # 随机初始出生点
        self.current_city = city_index
        self.path.append(city_index)
        self.open_table_city[city_index] = False
        self.move_count = 1

    # 选择下一个城市
    def __choice_next_city(self):

        next_city = -1
        select_citys_prob = [0.0 for i in range(city_num)]  #存储去下个城市的概率
        total_prob = 0.0

        # 获取去下一个城市的概率
        for i in range(city_num):
            if self.open_table_city[i]:
                try :
                    # 计算概率:与信息素浓度成正比,与距离成反比
                    select_citys_prob[i] = pow(pheromone_graph[self.current_city][i], ALPHA) * pow((1.0/distance_graph[self.current_city][i]), BETA)
                    total_prob += select_citys_prob[i]
                except ZeroDivisionError as e:
                    print ('Ant ID: {ID}, current city: {current}, target city: {target}'.format(ID = self.ID, current = self.current_city, target = i))
                    sys.exit(1)

        # 轮盘选择城市
        if total_prob > 0.0:
            # 产生一个随机概率,0.0-total_prob
            temp_prob = random.uniform(0.0, total_prob)
            for i in range(city_num):
                if self.open_table_city[i]:
                    # 轮次相减
                    temp_prob -= select_citys_prob[i]
                    if temp_prob < 0.0:
                        next_city = i
                        break

        # 未从概率产生,顺序选择一个未访问城市
        # if next_city == -1:
        #     for i in range(city_num):
        #         if self.open_table_city[i]:
        #             next_city = i
        #             break

        if (next_city == -1):
            next_city = random.randint(0, city_num - 1)
            while ((self.open_table_city[next_city]) == False):  # if==False,说明已经遍历过了
                next_city = random.randint(0, city_num - 1)

        # 返回下一个城市序号
        return next_city

    # 计算路径总距离
    def __cal_total_distance(self):

        temp_distance = 0.0

        for i in range(1, city_num):
            start, end = self.path[i], self.path[i-1]
            temp_distance += distance_graph[start][end]

        # 回路
        end = self.path[0]
        temp_distance += distance_graph[start][end]
        self.total_distance = temp_distance


    # 移动操作
    def __move(self, next_city):

        self.path.append(next_city)
        self.open_table_city[next_city] = False
        self.total_distance += distance_graph[self.current_city][next_city]
        self.current_city = next_city
        self.move_count += 1

    # 搜索路径
    def search_path(self):

        # 初始化数据
        self.__clean_data()

        # 搜素路径,遍历完所有城市为止
        while self.move_count < city_num:
            # 移动到下一个城市
            next_city =  self.__choice_next_city()
            self.__move(next_city)

        # 计算路径总长度
        self.__cal_total_distance()

#----------- TSP问题 -----------

class TSP(object):

    def __init__(self, root, width = 800, height = 600, n = city_num):

        # 创建画布
        self.root = root
        self.width = width
        self.height = height
        # 城市数目初始化为city_num
        self.n = n
        # tkinter.Canvas
        self.canvas = tkinter.Canvas(
                root,
                width = self.width,
                height = self.height,
                bg = "#EBEBEB",             # 背景白色
                xscrollincrement = 1,
                yscrollincrement = 1
            )
        self.canvas.pack(expand = tkinter.YES, fill = tkinter.BOTH)
        self.title("TSP蚁群算法(n:初始化 e:开始搜索 s:停止搜索 q:退出程序)")
        self.__r = 5
        self.__lock = threading.RLock()     # 线程锁

        self.__bindEvents()
        self.new()

        # 计算城市之间的距离
        for i in range(city_num):
            for j in range(city_num):
                temp_distance = pow((distance_x[i] - distance_x[j]), 2) + pow((distance_y[i] - distance_y[j]), 2)
                temp_distance = pow(temp_distance, 0.5)
                distance_graph[i][j] =float(int(temp_distance + 0.5))

    # 按键响应程序
    def __bindEvents(self):

        self.root.bind("q", self.quite)        # 退出程序
        self.root.bind("n", self.new)          # 初始化
        self.root.bind("e", self.search_path)  # 开始搜索
        self.root.bind("s", self.stop)         # 停止搜索

    # 更改标题
    def title(self, s):

        self.root.title(s)

    # 初始化
    def new(self, evt = None):

        # 停止线程
        self.__lock.acquire()
        self.__running = False
        self.__lock.release()

        self.clear()     # 清除信息
        self.nodes = []  # 节点坐标
        self.nodes2 = [] # 节点对象

        # 初始化城市节点
        for i in range(len(distance_x)):
            # 在画布上随机初始坐标
            x = distance_x[i]
            y = distance_y[i]
            self.nodes.append((x, y))
            # 生成节点椭圆,半径为self.__r
            node = self.canvas.create_oval(x - self.__r,
                    y - self.__r, x + self.__r, y + self.__r,
                    fill = "#ff0000",      # 填充红色
                    outline = "#000000",   # 轮廓白色
                    tags = "node",
                )
            self.nodes2.append(node)
            # 显示坐标
            self.canvas.create_text(x,y-10,              # 使用create_text方法在坐标(302,77)处绘制文字
                    text = '('+str(x)+','+str(y)+')',    # 所绘制文字的内容
                    fill = 'black'                       # 所绘制文字的颜色为灰色
                )

        # 顺序连接城市
        #self.line(range(city_num))

        # 初始城市之间的距离和信息素
        for i in range(city_num):
            for j in range(city_num):
                pheromone_graph[i][j] = 1.0

        self.ants = [Ant(ID) for ID in range(ant_num)]  # 初始蚁群
        self.best_ant = Ant(-1)                          # 初始最优解
        self.best_ant.total_distance = 1 << 31           # 初始最大距离
        self.iter = 1                                    # 初始化迭代次数

    # 将节点按order顺序连线
    def line(self, order):
        # 删除原线
        self.canvas.delete("line")
        def line2(i1, i2):
            p1, p2 = self.nodes[i1], self.nodes[i2]
            self.canvas.create_line(p1, p2, fill = "#000000", tags = "line")
            return i2

        # order[-1]为初始值
        reduce(line2, order, order[-1])

    # 清除画布
    def clear(self):
        for item in self.canvas.find_all():
            self.canvas.delete(item)

    # 退出程序
    def quite(self, evt):
        self.__lock.acquire()
        self.__running = False
        self.__lock.release()
        self.root.destroy()
        print (u"\n程序已退出...")
        sys.exit()

    # 停止搜索
    def stop(self, evt):
        self.__lock.acquire()
        self.__running = False
        self.__lock.release()

    # 开始搜索
    def search_path(self, evt = None):

        # 开启线程
        self.__lock.acquire()
        self.__running = True
        self.__lock.release()

        while self.__running:
            # 遍历每一只蚂蚁
            for ant in self.ants:
                # 搜索一条路径
                ant.search_path()
                # 与当前最优蚂蚁比较
                if ant.total_distance < self.best_ant.total_distance:
                    # 更新最优解
                    self.best_ant = copy.deepcopy(ant)
            # 更新信息素
            self.__update_pheromone_gragh()
            print (u"迭代次数:",self.iter,u"最佳路径总距离:",int(self.best_ant.total_distance))
            # 连线
            self.line(self.best_ant.path)
            # 设置标题
            self.title("TSP蚁群算法(n:随机初始 e:开始搜索 s:停止搜索 q:退出程序) 迭代次数: %d" % self.iter)
            # 更新画布
            self.canvas.update()
            self.iter += 1

    # 更新信息素
    def __update_pheromone_gragh(self):

        # 获取每只蚂蚁在其路径上留下的信息素
        temp_pheromone = [[0.0 for col in range(city_num)] for raw in range(city_num)]
        for ant in self.ants:
            for i in range(1,city_num):
                start, end = ant.path[i-1], ant.path[i]
                # 在路径上的每两个相邻城市间留下信息素,与路径总距离反比
                temp_pheromone[start][end] += Q / ant.total_distance
                temp_pheromone[end][start] = temp_pheromone[start][end]

        # 更新所有城市之间的信息素,旧信息素衰减加上新迭代信息素
        for i in range(city_num):
            for j in range(city_num):
                pheromone_graph[i][j] = pheromone_graph[i][j] * RHO + temp_pheromone[i][j]

    # 主循环
    def mainloop(self):
        self.root.mainloop()

#----------- 程序的入口处 -----------

if __name__ == '__main__':

    print (u"""
--------------------------------------------------------
    程序:蚁群算法解决TPS问题程序
    作者:许彬
    日期:2015-12-10
    语言:Python 2.7
    说明:转载程序,大家可访问原博客
--------------------------------------------------------
    """)
    TSP(tkinter.Tk()).mainloop()

你可能感兴趣的:(实验,论文)