算法学习笔记系列,这篇主要总结汇总一下基础算法中的递归,排序,查找。是接上一篇关于基础数据结构的《算法学习笔记之复杂度分析与线性表》。
递归需要满足的三个条件,1. 一个问题的解可以分解为几个子问题的解。2. 这个问题与分解之后的子问题,除了数据规模不同,求解思路完全一样。3. 存在递归终止条件。写递归代码的关键就是找到如何将大问题分解为小问题的规律,并且基于此写出递推公式,然后再推敲终止条件,最后将递推公式和终止条件翻译成代码。编写递归代码的关键是,只要遇到递归,我们就把它抽象成一个递推公式,不用想一层层的调用关系,不要试图用人脑去分解递归的每个步骤。
public int f(int n) {
if (n == 1) return 1;
if (n == 2) return 2;
// hasSolvedList可以理解成一个Map,key是n,value是f(n)
if (hasSolvedList.containsKey(n)) {
return hasSolvedList.get(n);
}
int ret = f(n-1) + f(n-2);
hasSolvedList.put(n, ret);
return ret;
}
因为递归本身就是借助栈来实现的,只不过我们使用的栈是系统或者虚拟机本身提供的,我们没有感知罢了。如果我们自己在内存堆上实现栈,手动模拟入栈、出栈过程,这样任何递归代码都可以改写成看上去不是递归代码的样子。
排序算法最常用的:冒泡排序、插入排序、选择排序、归并排序、快速排序、计数排序、基数排序、桶排序。
冒泡排序只会操作相邻的两个数据。每次冒泡操作都会对相邻的两个元素进行比较,看是否满足大小关系要求。如果不满足就让它俩互换。一次冒泡会让至少一个元素移动到它应该在的位置,重复 n 次,就完成了 n 个数据的排序工作。当某次冒泡操作已经没有数据交换时,说明已经达到完全有序,不用再继续执行后续的冒泡操作。
// 冒泡排序,a表示数组,n表示数组大小
public void bubbleSort(int[] a, int n) {
if (n <= 1) return;
for (int i = 0; i < n; ++i) {
// 提前退出冒泡循环的标志位
boolean flag = false;
for (int j = 0; j < n - i - 1; ++j) {
if (a[j] > a[j+1]) { // 交换
int tmp = a[j];
a[j] = a[j+1];
a[j+1] = tmp;
flag = true; // 表示有数据交换
}
}
if (!flag) break; // 没有数据交换,提前退出
}
}
将数组中的数据分为两个区间,已排序区间和未排序区间。初始已排序区间只有一个元素,就是数组的第一个元素。插入算法的核心思想是取未排序区间中的元素,在已排序区间中找到合适的插入位置将其插入,并保证已排序区间数据一直有序。重复这个过程,直到未排序区间中元素为空,算法结束。
插入排序也包含两种操作,一种是元素的比较,一种是元素的移动。当我们需要将一个数据 a 插入到已排序区间时,需要拿 a 与已排序区间的元素依次比较大小,找到合适的插入位置。找到插入点之后,我们还需要将插入点之后的元素顺序往后移动一位,这样才能腾出位置给元素 a 插入。
// 插入排序,a表示数组,n表示数组大小
public void insertionSort(int[] a, int n) {
if (n <= 1) return;
for (int i = 1; i < n; ++i) {
int value = a[i];
int j = i - 1;
// 查找插入的位置
for (; j >= 0; --j) {
if (a[j] > value) {
a[j+1] = a[j]; // 数据移动
} else {
break;
}
}
a[j+1] = value; // 插入数据
}
}
选择排序算法的实现思路有点类似插入排序,也分已排序区间和未排序区间。但是选择排序每次会从未排序区间中找到最小的元素,将其放到已排序区间的末尾。选择排序是一种不稳定的排序算法。选择排序每次都要找剩余未排序元素中的最小值,并和前面的元素交换位置,这样破坏了稳定性。
如果要排序一个数组,我们先把数组从中间分成前后两部分,然后对前后两部分分别排序,再将排好序的两部分合并在一起,这样整个数组就都有序了。归并排序是一个稳定的排序算法。归并排序的时间复杂度是 O(nlogn)。归并排序不是原地排序算法。
如果要排序数组中下标从 p 到 r 之间的一组数据,我们选择 p 到 r 之间的任意一个数据作为 pivot(分区点)。我们遍历 p 到 r 之间的数据,将小于 pivot 的放到左边,将大于 pivot 的放到右边,将 pivot 放到中间。经过这一步骤之后,数组 p 到 r 之间的数据就被分成了三个部分,前面 p 到 q-1 之间都是小于 pivot 的,中间是 pivot,后面的 q+1 到 r 之间是大于 pivot 的。
根据分治、递归的处理思想,我们可以用递归排序下标从 p 到 q-1 之间的数据和下标从 q+1 到 r 之间的数据,直到区间缩小为 1,就说明所有的数据都有序了。
快速排序并不是一个稳定的排序算法。
归并排序的处理过程是由下到上的,先处理子问题,然后再合并。而快排正好相反,它的处理过程是由上到下的,先分区,然后再处理子问题。归并排序虽然是稳定的、时间复杂度为 O(nlogn) 的排序算法,但是它是非原地排序算法。我们前面讲过,归并之所以是非原地排序算法,主要原因是合并函数无法在原地执行。快速排序通过设计巧妙的原地分区函数,可以实现原地排序,解决了归并排序占用太多内存的问题。
快排是一种原地、不稳定的排序算法
三种时间复杂度是 O(n) 的排序算法:桶排序、计数排序、基数排序。因为这些排序算法的时间复杂度是线性的,所以我们把这类排序算法叫作线性排序(Linear sort)。之所以能做到线性的时间复杂度,主要原因是,这三个算法是非基于比较的排序算法,都不涉及元素之间的比较操作。
桶排序,顾名思义,会用到“桶”,核心思想是将要排序的数据分到几个有序的桶里,每个桶里的数据再单独进行排序。桶内排完序之后,再把每个桶里的数据按照顺序依次取出,组成的序列就是有序的了。
如果要排序的数据有 n 个,我们把它们均匀地划分到 m 个桶内,每个桶里就有 k=n/m 个元素。每个桶内部使用快速排序,时间复杂度为 O(k * logk)。m 个桶排序的时间复杂度就是 O(m * k * logk),因为 k=n/m,所以整个桶排序的时间复杂度就是 O(n*log(n/m))。当桶的个数 m 接近数据个数 n 时,log(n/m) 就是一个非常小的常量,这个时候桶排序的时间复杂度接近 O(n)。
当要排序的 n 个数据,所处的范围并不大的时候,比如最大值是 k,我们就可以把数据划分成 k 个桶。每个桶内的数据值都是相同的,省掉了桶内排序的时间。
// 计数排序,a是数组,n是数组大小。假设数组中存储的都是非负整数。
public void countingSort(int[] a, int n) {
if (n <= 1) return;
// 查找数组中数据的范围
int max = a[0];
for (int i = 1; i < n; ++i) {
if (max < a[i]) {
max = a[i];
}
}
int[] c = new int[max + 1]; // 申请一个计数数组c,下标大小[0,max]
for (int i = 0; i <= max; ++i) {
c[i] = 0;
}
// 计算每个元素的个数,放入c中
for (int i = 0; i < n; ++i) {
c[a[i]]++;
}
// 依次累加
for (int i = 1; i <= max; ++i) {
c[i] = c[i-1] + c[i];
}
// 临时数组r,存储排序之后的结果
int[] r = new int[n];
// 计算排序的关键步骤,有点难理解
for (int i = n - 1; i >= 0; --i) {
int index = c[a[i]]-1;
r[index] = a[i];
c[a[i]]--;
}
// 将结果拷贝给a数组
for (int i = 0; i < n; ++i) {
a[i] = r[i];
}
}
计数排序只能用在数据范围不大的场景中,如果数据范围 k 比要排序的数据 n 大很多,就不适合用计数排序了。而且,计数排序只能给非负整数排序,如果要排序的数据是其他类型的,要将其在不改变相对大小的情况下,转化为非负整数。
基数排序对要排序的数据是有要求的,需要可以分割出独立的“位”来比较,而且位之间有递进的关系,如果 a 数据的高位比 b 数据大,那剩下的低位就不用比较了。除此之外,每一位的数据范围不能太大,要可以用线性排序算法来排序,否则,基数排序的时间复杂度就无法做到 O(n) 了。
总结之前的基础排序算法如下:
排序算法 | 时间复杂度 | 是否稳定排序 | 是否原地排序 |
---|---|---|---|
冒泡排序 | O ( n 2 ) O_{(n^2)} O(n2) | 是 | 是 |
插入排序 | O ( n 2 ) O_{(n^2)} O(n2) | 是 | 是 |
选择排序 | O ( n 2 ) O_{(n^2)} O(n2) | 否 | 是 |
快速排序 | O ( n l o g n ) O_{(nlog_n)} O(nlogn) | 否 | 是 |
归并排序 | O ( n l o g n ) O_{(nlog_n)} O(nlogn) | 是 | 否 |
计数排序 | O ( n + k ) , k 是 数 据 范 围 O_{(n+k)},k是数据范围 O(n+k),k是数据范围 | 是 | 否 |
桶排序 | O ( n ) O_{(n)} O(n) | 是 | 否 |
基数排序 | O ( d n ) O_{(dn)} O(dn),d是维度 | 是 | 否 |
二分思想,每次都与区间的中间数据比对大小,缩小查找区间的范围。
二分查找针对的是一个有序的数据集合,查找思想有点类似分治思想。每次都通过跟区间的中间元素对比,将待查找的区间缩小为之前的一半,直到找到要查找的元素,或者区间被缩小为 0。
时间复杂度为 O(logn)。O(logn) :对数时间复杂度。这是一种极其高效的时间复杂度,有的时候甚至比时间复杂度是常量级 O(1) 的算法还要高效。
public int bsearch(int[] a, int n, int value) {
int low = 0;
int high = n - 1;
while (low <= high) {
int mid = (low + high) / 2;
if (a[mid] == value) {
return mid;
} else if (a[mid] < value) {
low = mid + 1;
} else {
high = mid - 1;
}
}
return -1;
}
// 二分查找的递归实现
public int bsearch(int[] a, int n, int val) {
return bsearchInternally(a, 0, n - 1, val);
}
private int bsearchInternally(int[] a, int low, int high, int value) {
if (low > high) return -1;
int mid = low + ((high - low) >> 1);
if (a[mid] == value) {
return mid;
} else if (a[mid] < value) {
return bsearchInternally(a, mid+1, high, value);
} else {
return bsearchInternally(a, low, mid-1, value);
}
}
有序数据集合中存在重复的数据,以数据是从小到大排列为前提。
public int bsearch(int[] a, int n, int value) {
int low = 0;
int high = n - 1;
while (low <= high) {
int mid = low + ((high - low) >> 1);
if (a[mid] > value) {
high = mid - 1;
} else if (a[mid] < value) {
low = mid + 1;
} else {
if ((mid == 0) || (a[mid - 1] != value)) return mid;
else high = mid - 1;
}
}
return -1;
}
public int bsearch(int[] a, int n, int value) {
int low = 0;
int high = n - 1;
while (low <= high) {
int mid = low + ((high - low) >> 1);
if (a[mid] > value) {
high = mid - 1;
} else if (a[mid] < value) {
low = mid + 1;
} else {
if ((mid == n - 1) || (a[mid + 1] != value)) return mid;
else low = mid + 1;
}
}
return -1;
}
public int bsearch(int[] a, int n, int value) {
int low = 0;
int high = n - 1;
while (low <= high) {
int mid = low + ((high - low) >> 1);
if (a[mid] >= value) {
if ((mid == 0) || (a[mid - 1] < value)) return mid;
else high = mid - 1;
} else {
low = mid + 1;
}
}
return -1;
}
public int bsearch7(int[] a, int n, int value) {
int low = 0;
int high = n - 1;
while (low <= high) {
int mid = low + ((high - low) >> 1);
if (a[mid] > value) {
high = mid - 1;
} else {
if ((mid == n - 1) || (a[mid + 1] > value)) return mid;
else low = mid + 1;
}
}
return -1;
}
链表加多级索引的结构,就是跳表。跳表使用空间换时间的设计思路,通过构建多级索引来提高查询的效率,实现了基于链表的“二分查找”。跳表是一种动态数据结构,支持快速的插入、删除、查找操作,时间复杂度都是 O(logn)。跳表的空间复杂度是 O(n)。不过,跳表的实现非常灵活,可以通过改变索引构建策略,有效平衡执行效率和内存消耗。