算法学习笔记之递归排序与查找

算法学习笔记之递归排序与查找

算法学习笔记系列,这篇主要总结汇总一下基础算法中的递归,排序,查找。是接上一篇关于基础数据结构的《算法学习笔记之复杂度分析与线性表》。

文章目录

      • 算法学习笔记之递归排序与查找
        • 1. 递归
        • 2. 排序
          • 2.1 冒泡排序(Bubble Sort)
          • 2.2 插入排序(Insertion Sort)
          • 2.3 选择排序(Selection Sort)
          • 2.4 归并排序(Merge Sort)
          • 2.5 快速排序算法(Quicksort)
          • 2.6 桶排序(Bucket sort)
          • 2.7 计数排序(Counting sort)
          • 2.8 基数排序(Radix sort)
          • 2.9 排序算法总结
        • 3. 二分查找
          • 3.1 简单的二分查找
          • 3.2 查找第一个值等于给定值的元素
          • 3.3 查找最后一个值等于给定值的元素
          • 3.4 查找第一个大于等于给定值的元素
          • 3.5 查找最后一个小于等于给定值的元素
        • 4. 跳表

1. 递归

递归需要满足的三个条件,1. 一个问题的解可以分解为几个子问题的解。2. 这个问题与分解之后的子问题,除了数据规模不同,求解思路完全一样。3. 存在递归终止条件。写递归代码的关键就是找到如何将大问题分解为小问题的规律,并且基于此写出递推公式,然后再推敲终止条件,最后将递推公式和终止条件翻译成代码。编写递归代码的关键是,只要遇到递归,我们就把它抽象成一个递推公式,不用想一层层的调用关系,不要试图用人脑去分解递归的每个步骤。

  • 注意事项:
  • 递归代码要警惕堆栈溢出
  • 递归代码要警惕重复计算
    为了避免重复计算,我们可以通过一个数据结构(比如散列表)来保存已经求解过的 f(k)。当递归调用到 f(k) 时,先看下是否已经求解过了。如果是,则直接从散列表中取值返回,不需要重复计算

public int f(int n) {
  if (n == 1) return 1;
  if (n == 2) return 2;
  
  // hasSolvedList可以理解成一个Map,key是n,value是f(n)
  if (hasSolvedList.containsKey(n)) {
    return hasSolvedList.get(n);
  }
  
  int ret = f(n-1) + f(n-2);
  hasSolvedList.put(n, ret);
  return ret;
}

因为递归本身就是借助栈来实现的,只不过我们使用的栈是系统或者虚拟机本身提供的,我们没有感知罢了。如果我们自己在内存堆上实现栈,手动模拟入栈、出栈过程,这样任何递归代码都可以改写成看上去不是递归代码的样子。

2. 排序

排序算法最常用的:冒泡排序、插入排序、选择排序、归并排序、快速排序、计数排序、基数排序、桶排序。

2.1 冒泡排序(Bubble Sort)

冒泡排序只会操作相邻的两个数据。每次冒泡操作都会对相邻的两个元素进行比较,看是否满足大小关系要求。如果不满足就让它俩互换。一次冒泡会让至少一个元素移动到它应该在的位置,重复 n 次,就完成了 n 个数据的排序工作。当某次冒泡操作已经没有数据交换时,说明已经达到完全有序,不用再继续执行后续的冒泡操作。

  • 冒泡的过程只涉及相邻数据的交换操作,只需要常量级的临时空间,所以它的空间复杂度为 O(1),是一个原地排序算法。
  • 在冒泡排序中,只有交换才可以改变两个元素的前后顺序。为了保证冒泡排序算法的稳定性,当有相邻的两个元素大小相等的时候,我们不做交换,相同大小的数据在排序前后不会改变顺序,所以冒泡排序是稳定的排序算法。

// 冒泡排序,a表示数组,n表示数组大小
public void bubbleSort(int[] a, int n) {
  if (n <= 1) return;
 
 for (int i = 0; i < n; ++i) {
    // 提前退出冒泡循环的标志位
    boolean flag = false;
    for (int j = 0; j < n - i - 1; ++j) {
      if (a[j] > a[j+1]) { // 交换
        int tmp = a[j];
        a[j] = a[j+1];
        a[j+1] = tmp;
        flag = true;  // 表示有数据交换      
      }
    }
    if (!flag) break;  // 没有数据交换,提前退出
  }
}
2.2 插入排序(Insertion Sort)

将数组中的数据分为两个区间,已排序区间和未排序区间。初始已排序区间只有一个元素,就是数组的第一个元素。插入算法的核心思想是取未排序区间中的元素,在已排序区间中找到合适的插入位置将其插入,并保证已排序区间数据一直有序。重复这个过程,直到未排序区间中元素为空,算法结束。
插入排序也包含两种操作,一种是元素的比较,一种是元素的移动。当我们需要将一个数据 a 插入到已排序区间时,需要拿 a 与已排序区间的元素依次比较大小,找到合适的插入位置。找到插入点之后,我们还需要将插入点之后的元素顺序往后移动一位,这样才能腾出位置给元素 a 插入。

// 插入排序,a表示数组,n表示数组大小
public void insertionSort(int[] a, int n) {
  if (n <= 1) return;

  for (int i = 1; i < n; ++i) {
    int value = a[i];
    int j = i - 1;
    // 查找插入的位置
    for (; j >= 0; --j) {
      if (a[j] > value) {
        a[j+1] = a[j];  // 数据移动
      } else {
        break;
      }
    }
    a[j+1] = value; // 插入数据
  }
}
2.3 选择排序(Selection Sort)

选择排序算法的实现思路有点类似插入排序,也分已排序区间和未排序区间。但是选择排序每次会从未排序区间中找到最小的元素,将其放到已排序区间的末尾。选择排序是一种不稳定的排序算法。选择排序每次都要找剩余未排序元素中的最小值,并和前面的元素交换位置,这样破坏了稳定性。

2.4 归并排序(Merge Sort)

如果要排序一个数组,我们先把数组从中间分成前后两部分,然后对前后两部分分别排序,再将排好序的两部分合并在一起,这样整个数组就都有序了。归并排序是一个稳定的排序算法。归并排序的时间复杂度是 O(nlogn)。归并排序不是原地排序算法。

2.5 快速排序算法(Quicksort)

如果要排序数组中下标从 p 到 r 之间的一组数据,我们选择 p 到 r 之间的任意一个数据作为 pivot(分区点)。我们遍历 p 到 r 之间的数据,将小于 pivot 的放到左边,将大于 pivot 的放到右边,将 pivot 放到中间。经过这一步骤之后,数组 p 到 r 之间的数据就被分成了三个部分,前面 p 到 q-1 之间都是小于 pivot 的,中间是 pivot,后面的 q+1 到 r 之间是大于 pivot 的。
根据分治、递归的处理思想,我们可以用递归排序下标从 p 到 q-1 之间的数据和下标从 q+1 到 r 之间的数据,直到区间缩小为 1,就说明所有的数据都有序了。
快速排序并不是一个稳定的排序算法。
归并排序的处理过程是由下到上的,先处理子问题,然后再合并。而快排正好相反,它的处理过程是由上到下的,先分区,然后再处理子问题。归并排序虽然是稳定的、时间复杂度为 O(nlogn) 的排序算法,但是它是非原地排序算法。我们前面讲过,归并之所以是非原地排序算法,主要原因是合并函数无法在原地执行。快速排序通过设计巧妙的原地分区函数,可以实现原地排序,解决了归并排序占用太多内存的问题。
快排是一种原地、不稳定的排序算法

2.6 桶排序(Bucket sort)

三种时间复杂度是 O(n) 的排序算法:桶排序、计数排序、基数排序。因为这些排序算法的时间复杂度是线性的,所以我们把这类排序算法叫作线性排序(Linear sort)。之所以能做到线性的时间复杂度,主要原因是,这三个算法是非基于比较的排序算法,都不涉及元素之间的比较操作。

桶排序,顾名思义,会用到“桶”,核心思想是将要排序的数据分到几个有序的桶里,每个桶里的数据再单独进行排序。桶内排完序之后,再把每个桶里的数据按照顺序依次取出,组成的序列就是有序的了。
如果要排序的数据有 n 个,我们把它们均匀地划分到 m 个桶内,每个桶里就有 k=n/m 个元素。每个桶内部使用快速排序,时间复杂度为 O(k * logk)。m 个桶排序的时间复杂度就是 O(m * k * logk),因为 k=n/m,所以整个桶排序的时间复杂度就是 O(n*log(n/m))。当桶的个数 m 接近数据个数 n 时,log(n/m) 就是一个非常小的常量,这个时候桶排序的时间复杂度接近 O(n)。

2.7 计数排序(Counting sort)

当要排序的 n 个数据,所处的范围并不大的时候,比如最大值是 k,我们就可以把数据划分成 k 个桶。每个桶内的数据值都是相同的,省掉了桶内排序的时间。


// 计数排序,a是数组,n是数组大小。假设数组中存储的都是非负整数。
public void countingSort(int[] a, int n) {
  if (n <= 1) return;

  // 查找数组中数据的范围
  int max = a[0];
  for (int i = 1; i < n; ++i) {
    if (max < a[i]) {
      max = a[i];
    }
  }

  int[] c = new int[max + 1]; // 申请一个计数数组c,下标大小[0,max]
  for (int i = 0; i <= max; ++i) {
    c[i] = 0;
  }

  // 计算每个元素的个数,放入c中
  for (int i = 0; i < n; ++i) {
    c[a[i]]++;
  }

  // 依次累加
  for (int i = 1; i <= max; ++i) {
    c[i] = c[i-1] + c[i];
  }

  // 临时数组r,存储排序之后的结果
  int[] r = new int[n];
  // 计算排序的关键步骤,有点难理解
  for (int i = n - 1; i >= 0; --i) {
    int index = c[a[i]]-1;
    r[index] = a[i];
    c[a[i]]--;
  }

  // 将结果拷贝给a数组
  for (int i = 0; i < n; ++i) {
    a[i] = r[i];
  }
}

计数排序只能用在数据范围不大的场景中,如果数据范围 k 比要排序的数据 n 大很多,就不适合用计数排序了。而且,计数排序只能给非负整数排序,如果要排序的数据是其他类型的,要将其在不改变相对大小的情况下,转化为非负整数。

2.8 基数排序(Radix sort)

基数排序对要排序的数据是有要求的,需要可以分割出独立的“位”来比较,而且位之间有递进的关系,如果 a 数据的高位比 b 数据大,那剩下的低位就不用比较了。除此之外,每一位的数据范围不能太大,要可以用线性排序算法来排序,否则,基数排序的时间复杂度就无法做到 O(n) 了。

2.9 排序算法总结

总结之前的基础排序算法如下:

排序算法 时间复杂度 是否稳定排序 是否原地排序
冒泡排序 O ( n 2 ) O_{(n^2)} O(n2)
插入排序 O ( n 2 ) O_{(n^2)} O(n2)
选择排序 O ( n 2 ) O_{(n^2)} O(n2)
快速排序 O ( n l o g n ) O_{(nlog_n)} O(nlogn)
归并排序 O ( n l o g n ) O_{(nlog_n)} O(nlogn)
计数排序 O ( n + k ) , k 是 数 据 范 围 O_{(n+k)},k是数据范围 O(n+k)k
桶排序 O ( n ) O_{(n)} O(n)
基数排序 O ( d n ) O_{(dn)} O(dn),d是维度
  • Glibc 中的 qsort() 函数
    qsort() 会优先使用归并排序来排序输入数据,要排序的数据量比较大的时候,qsort() 会改为用快速排序算法来排序。
    qsort() 选择分区点的方法是“三数取中法”,即,从区间的首、尾、中间,分别取出一个数,然后对比大小,取这 3 个数的中间值作为分区点。这样每间隔某个固定的长度,取数据出来比较,将中间值作为分区点的分区算法。
    qsort() 并不仅仅用到了归并排序和快速排序,它还用到了插入排序。在快速排序的过程中,当要排序的区间中,元素的个数小于等于 4 时,qsort() 就退化为插入排序,不再继续用递归来做快速排序

3. 二分查找

二分思想,每次都与区间的中间数据比对大小,缩小查找区间的范围。
二分查找针对的是一个有序的数据集合,查找思想有点类似分治思想。每次都通过跟区间的中间元素对比,将待查找的区间缩小为之前的一半,直到找到要查找的元素,或者区间被缩小为 0。
时间复杂度为 O(logn)。O(logn) :对数时间复杂度。这是一种极其高效的时间复杂度,有的时候甚至比时间复杂度是常量级 O(1) 的算法还要高效。

3.1 简单的二分查找
  • 最简单的情况就是有序数组中不存在重复元素,我们在其中用二分查找值等于给定值的数据。

public int bsearch(int[] a, int n, int value) {
  int low = 0;
  int high = n - 1;

  while (low <= high) {
    int mid = (low + high) / 2;
    if (a[mid] == value) {
      return mid;
    } else if (a[mid] < value) {
      low = mid + 1;
    } else {
      high = mid - 1;
    }
  }

  return -1;
}
  • 用递归来实现

// 二分查找的递归实现
public int bsearch(int[] a, int n, int val) {
  return bsearchInternally(a, 0, n - 1, val);
}

private int bsearchInternally(int[] a, int low, int high, int value) {
  if (low > high) return -1;

  int mid =  low + ((high - low) >> 1);
  if (a[mid] == value) {
    return mid;
  } else if (a[mid] < value) {
    return bsearchInternally(a, mid+1, high, value);
  } else {
    return bsearchInternally(a, low, mid-1, value);
  }
}
  • 应用场景的局限性
  1. 二分查找依赖的是顺序表结构,简单点说就是数组
  2. 二分查找针对的是有序数据
  3. 数据量太小不适合二分查找
  4. 数据量太大也不适合二分查找
3.2 查找第一个值等于给定值的元素

有序数据集合中存在重复的数据,以数据是从小到大排列为前提。


public int bsearch(int[] a, int n, int value) {
  int low = 0;
  int high = n - 1;
  while (low <= high) {
    int mid =  low + ((high - low) >> 1);
    if (a[mid] > value) {
      high = mid - 1;
    } else if (a[mid] < value) {
      low = mid + 1;
    } else {
      if ((mid == 0) || (a[mid - 1] != value)) return mid;
      else high = mid - 1;
    }
  }
  return -1;
}
3.3 查找最后一个值等于给定值的元素

public int bsearch(int[] a, int n, int value) {
  int low = 0;
  int high = n - 1;
  while (low <= high) {
    int mid =  low + ((high - low) >> 1);
    if (a[mid] > value) {
      high = mid - 1;
    } else if (a[mid] < value) {
      low = mid + 1;
    } else {
      if ((mid == n - 1) || (a[mid + 1] != value)) return mid;
      else low = mid + 1;
    }
  }
  return -1;
}
3.4 查找第一个大于等于给定值的元素

public int bsearch(int[] a, int n, int value) {
  int low = 0;
  int high = n - 1;
  while (low <= high) {
    int mid =  low + ((high - low) >> 1);
    if (a[mid] >= value) {
      if ((mid == 0) || (a[mid - 1] < value)) return mid;
      else high = mid - 1;
    } else {
      low = mid + 1;
    }
  }
  return -1;
}
3.5 查找最后一个小于等于给定值的元素

public int bsearch7(int[] a, int n, int value) {
  int low = 0;
  int high = n - 1;
  while (low <= high) {
    int mid =  low + ((high - low) >> 1);
    if (a[mid] > value) {
      high = mid - 1;
    } else {
      if ((mid == n - 1) || (a[mid + 1] > value)) return mid;
      else low = mid + 1;
    }
  }
  return -1;
}

4. 跳表

链表加多级索引的结构,就是跳表。跳表使用空间换时间的设计思路,通过构建多级索引来提高查询的效率,实现了基于链表的“二分查找”。跳表是一种动态数据结构,支持快速的插入、删除、查找操作,时间复杂度都是 O(logn)。跳表的空间复杂度是 O(n)。不过,跳表的实现非常灵活,可以通过改变索引构建策略,有效平衡执行效率和内存消耗。

你可能感兴趣的:(Algorithm)