http://acm.hdu.edu.cn/showproblem.php?pid=6333
Problem Description
There are n apples on a tree, numbered from 1 to n.
Count the number of ways to pick at most m apples.
题意:T(10万)组询问,每次询问 ∑ i = 0 m C ( n , i ) \sum_{i=0}^{m}C(n,i) ∑i=0mC(n,i)
思路:
组合数式子推导:
C ( n , 0 ) + C ( n , 1 ) + C ( n , 2 ) + . . . + C ( n , m ) C(n,0)+C(n,1)+C(n,2)+...+C(n,m) C(n,0)+C(n,1)+C(n,2)+...+C(n,m)
C ( n , 0 ) + C ( n , 1 ) + C ( n , 2 ) + . . . + C ( n , m ) C(n,0)+C(n,1)+C(n,2)+...+C(n,m) C(n,0)+C(n,1)+C(n,2)+...+C(n,m)
上下相加,得:
C ( n , 0 ) + C ( n + 1 , 1 ) + C ( n + 1 , 2 ) + . . . + C ( n + 1 , m ) + C ( n , m ) = 2 ∗ S ( n , m ) C(n,0)+C(n+1,1)+C(n+1,2)+...+C(n+1,m)+C(n,m)=2*S(n,m) C(n,0)+C(n+1,1)+C(n+1,2)+...+C(n+1,m)+C(n,m)=2∗S(n,m)
C ( n + 1 , 0 ) + C ( n + 1 , 1 ) + C ( n + 1 , 2 ) + . . . + C ( n + 1 , m ) + C ( n , m ) = 2 ∗ S ( n , m ) C(n+1,0)+C(n+1,1)+C(n+1,2)+...+C(n+1,m)+C(n,m)=2*S(n,m) C(n+1,0)+C(n+1,1)+C(n+1,2)+...+C(n+1,m)+C(n,m)=2∗S(n,m)
即 S ( n + 1 , m ) + C ( n , m ) = 2 ∗ S ( n , m ) S(n+1,m)+C(n,m)=2*S(n,m) S(n+1,m)+C(n,m)=2∗S(n,m)
另外注意,这个莫队处理的最先并不是真正的区间,注意四个 w h i l e while while要使得当前 S ( n , m ) S(n,m) S(n,m)满足实际意义,即 n > = m n>=m n>=m,根据此来决定 w h i l e while while的顺序。
#include
using namespace std;
typedef long long ll;
const int maxn = 100000+100;
const int mod = 1000000007;
int T,n,m,SIZE,ans[maxn];
ll fac[maxn],inv[maxn];
ll now_ans;
struct Query{
int n,m,id;
bool operator < (Query x){
if(n/SIZE!=x.n/SIZE)return n/SIZE<x.n/SIZE;
return m<x.m;
}
}Q[maxn];
ll pow_mod(ll a,ll n,ll m)
{
if(n==0)return 1;
ll x=pow_mod(a,n/2,m);
x=x*x%m;
if(n&1)x=x*a%m;
return x;
}
void init()
{
SIZE=sqrt(T);
fac[0]=1;
for(int i=1;i<maxn;i++)fac[i]=fac[i-1]*i%mod;
for(int i=0;i<maxn;i++)inv[i]=pow_mod(fac[i],mod-2,mod);//注意inv[0]也要有,因为下面需要0!的逆元
}
ll C(int n,int m)
{
return fac[n]*inv[m]%mod*inv[n-m]%mod;
}
int main()
{
//freopen("input.in","r",stdin);
cin>>T;
init();
for(int i=1;i<=T;i++)scanf("%d%d",&Q[i].n,&Q[i].m),Q[i].id=i;
sort(Q+1,Q+1+T);
int n=Q[1].n,m=0;
now_ans=1;
for(int i=1;i<=T;i++)
{
while(n<Q[i].n){
now_ans=(2*now_ans-C(n,m)+mod)%mod;
n++;
}
while(m>Q[i].m){
now_ans=(now_ans-C(n,m)+mod)%mod;
m--;
}
while(n>Q[i].n){
now_ans=(now_ans+C(n-1,m))*inv[2]%mod;
n--;
}
while(m<Q[i].m){
now_ans=(now_ans+C(n,m+1))%mod;
m++;
}
ans[Q[i].id]=now_ans;
}
for(int i=1;i<=T;i++)printf("%d\n",ans[i]);
return 0;
}