- caffemodel特征可视化_Caffe学习笔记4图像特征进行可视化
weixin_39824801
caffemodel特征可视化
Caffe学习笔记4图像特征进行可视化本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权欢迎关注我的博客:http://blog.csdn.net/hit2015spring和http://www.cnblogs.com/xujianqing/可以算是对它的翻译的总结吧,它可以算是学习笔记2的一个发展,2是介绍怎么提取特征,这是介绍怎么可视化特征1、准备工作首先
- Caffe学习笔记1-安装以及代码结构
baobei0112
CNN卷积神经网络
Caffe学习笔记1-安装以及代码结构ByYuFeiGan2014-12-09更新日期:2014-12-09安装按照官网教程安装,我在OSX10.9和Ubuntu14.04上面都安装成功了。主要麻烦在于gloggflagsgtest这几个依赖项是google上面的需要。由于我用Mac没有CUDA,所以安装时需要设置CPU_ONLY:=1。如果不是干净的系统,安装还是有点麻烦的比如我在OSX10.9
- caffe学习笔记--写一个运行caffe.cpp的makefile
thystar
caffe学习
之前因为有caffe的项目要放到服务器上面,但是其实不需要在服务器上面重新安装caffe,所以写了个makefile.这里改写了个简单的,比较容易读的,只运行caffe.cpp,如果由其他的,可以按照makefile的规则添加就好。首先,还是要说一下关于caffe的依赖,参考之前的两篇博客:http://blog.csdn.net/thystar/article/details/51179064和
- caffe学习笔记10.1--Fine-tuning a Pretrained Network for Style Recognition(new)
thystar
caffe学习
在之前的文章里,写过一个关于微调的博客,但是今天上去发现这部分已经更新了http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/02-fine-tuning.ipynb,因此补一篇最新的,关于微调,前面的文章由讲,参考http://blog.csdn.net/thystar/article/details/5067553
- caffe学习笔记(11):多任务学习之HDF5Data类型数据集生成
guyunee
deeplearningmatlabobjectdetection数据标签caffe深度学习
最近开始研究多任务学习(multi-tasklearning,MTL),先分享给大家:本文主要讲述数据集的建立,HDF5Data类型用于处理多标签数据,在网络中定义为:layer{name:"data"type:"HDF5Data"top:"data"top:"label"include{phase:TRAIN}hdf5_data_param{source:"list_train.txt"batc
- Ubuntu14.04下配置Caffe+OpenCV2.4.10+CUDA7.5+cuDNN5.1.10
cuihaolong
3DPrint系统配置
1.CUDA配置与Tensorflow,Keras等深度学习框架一样的配置方法,一次配置可以重用,其他基础软件和依赖项亦可参考:Caffe学习笔记2--Ubuntu14.0464bit安装Caffe(GPU版本)Ubuntu14.04+Caffe+Cuda7.5+Opencv3.0安装教程Caffe+Ubuntu14.0464bit+CUDA6.5配置说明Caffe搭建:Ubuntu14.04+C
- Caffe学习笔记(一): 训练和测试自己的数据集
__Sunshine__
笔记Pythoncaffe训练数据集计算机视觉
1数据准备首先在caffe根目录下建立一个文件夹myfile,用于存放数据文件和后面的caffe模型相关文件。然后在myfile文件夹下建立build_lmdb和datatest两个文件夹,其中build_lmdb文件夹用于存放生成的lmdb文件,datatest文件夹存放图片数据。在datatest下主要有2个文件夹和2个.sh文件和2个.txt文件,其中train文件夹中存放待训练的图片,va
- Caffe学习笔记6:过程小结
Zz鱼丸
之前写的学习笔记1用两种方法进行预测,今天发现有点不对。下面进行分析总结:先来看看Classifier的源代码#!/usr/bin/envpython"""ClassifierisanimageclassifierspecializationofNet."""importnumpyasnpimportcaffeclassClassifier(caffe.Net):"""Classifierexte
- Caffe学习笔记11:Ubuntu 16.04 中 caffe 编译出现的错误——fatal error: hdf5.h: 没有那个文件或目录
weixin_41774576
Caffe
step1:cd/usr/lib/x86_64-linux-gnusudoln-slibhdf5_serial.so.8.0.2libhdf5.sosudoln-slibhdf5_serial_hl.so.8.0.2libhdf5_hl.sostep2:changeMakefile.config//打开Makefile.config将下面的INCLUDE_DIRS:=$(PYTHON_INCLUD
- Caffe学习笔记(1)--在spyder中 import caffe
spcq4
caffe学习笔记
在配置好caffe环境之后无法在anaconda的spyder中直接导入caffe的库,需现先将caffe的路径导入进去。操作如下:importsyscaffe_home='/home/kelly/DL/caffe-master/'sys.path.insert(0,caffe_home+'python')importcaffe
- Caffe学习笔记(2)--spyder 下绘制网络结构
spcq4
caffe学习笔记pythoncaffespyder网络结构
直接使用Caffe中的python脚本绘制网络结构的方法请参照链接:http://www.cnblogs.com/denny402/p/5106764.html。因为本人在学习caffe的时候希望在anaconda的环境下区编辑,所以这里介绍如何在spyder中编写python程序来绘制网络结构图。程序如下:#将caffe包含到路径中importsyscaffe_home='/home/kelly
- Caffe学习笔记(2)优化算法的选择
AshBringer555
Caffe
优化算法的选择参考:1、http://blog.csdn.net/u014595019/article/details/52989301caffe中的优化算法有以下六中可选项,他们分别是SGDAdaDeltaAdaGradAdamNesterovRMSProp1、SGDSGD全名stochasticgradientdescent,即随机梯度下降。不过这里的SGD其实跟MBGD(minibatchg
- Caffe学习笔记
jiarenyf
caffe
目录:安装与配置Tutorial学习PyCaffe学习buildtools学习其他安装与配置Ubuntu14.04安装Caffe(仅CPU)Ubuntu14.04安装CudaUbuntu14.04安装Caffe(GPU)Ubuntu14.04CuDNN安装(Caffe+Cuda7.0下)Tutorial学习Caffe学习:Blobs,Layers,andNetsCaffe学习:Forwardand
- Caffe学习笔记(一)
LaLa_2539
导言今天重新编译了OpenPose的Caffe修改版,准备用于网络的训练,在正式训练网络之前,想先通过实例的学习来对网络训练有大致的认识转化数据为LMDB格式CaffeforPython输入的预处理一、为何需要对输入减去均值?https://blog.csdn.net/GoodShot/article/details/80373372https://blog.csdn.net/dcxhun3/ar
- Caffe学习笔记1:linux下建立自己的数据库训练和测试caffe中已有网络
葭宝
caffe
本文是基于薛开宇《学习笔记3:基于自己的数据训练和测试“caffeNet”》基础上,从头到尾把实验跑了一遍~对该文中不清楚的地方做了更正和说明。主要工作如下:1、下载图片建立数据库2、将图片转化为256*256的lmdb格式3、计算图像均值4、定义网络修改部分参数1、下载图片建立数据库在caffe-master/data下新建一个属于自己的数据库命名为babyjia,并在该文件夹下创建train和
- Caffe学习笔记(四)——Windows 下caffe配置相关问题说明
缄默hong
深度学习
本文主要介绍:Win1064位系统下,再次配置caffe,遇到了一些新的问题,现对这些问题及其解决方法进行总结。详细的安装配置过程见以前博客:Caffe学习笔记(一)——Windows下caffe安装与配置1.CUDA的安装问题CUDA的安装过程可以参考CUDA7.5安装及配置(WIN764英伟达G卡VS2012),但参考到第九步即可,第十步及其以后的过程可以不进行配置;2.编译过程中:无法打开输
- Caffe学习笔记(1):简单的数据可视化
Zongxian_Lee
深度学习python学习笔记数据可视化
caffe的底层是c++写的,如果要进行数据可视化,需要借助其它的库或者是接口,如opencv,python或者是matlab,python的环境需要自行配置,因为我使用的都是网管同志已经配置好的深度学习服务器,所以不用管底层的一些配置问题,如果需要自行配置自己的机器,请参照:http://www.cnblogs.com/denny402/p/5088399.html当前目录为caffe的根目录,
- caffe学习笔记12 -- R-CNN detection
thystar
caffe学习
这是caffe文档中NotebookExamples的倒数第二个例子,链接地址http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/detection.ipynb这个例子用R-CNN做目标检测。R-CNN是一个先进的目标检测模型,它通过微调caffe模型提供分类区域。对于R-CNN系统和模型的详细介绍,参考Richfe
- caffe学习笔记25-过拟合原因及分析
YiLiang_
deeplearningcaffe
1.过拟合原因:1)样本数量太少,抽样方法错误,抽样时没有足够正确考虑业务场景或业务特点,等等导致抽出的样本数据不能有效足够代表业务逻辑或业务场景2)样本里的噪音数据干扰过大,大到模型过分记住了噪音特征,反而忽略了真实的输入输出间的关系3)就是建模时的“逻辑假设”到了模型应用时已经不能成立了,模型没有通用性,选择参数更少的网络4)没有用dropout5)weight_decay:默认0.005,可
- Caffe 学习笔记之CIFFA-10
静风儿
Caffe学习笔记之CIFFA-10背景知识今天小编就亲身实践利用前几天在Ubuntu14.04刚装好的caffe进行CIFFA-10的训练。CIFAR-10数据集包含60000张32x32的彩色图片,一共有十种类别,每种类别有6000张。数据集中有50000张训练集和10000张测试集。这个数据集一共分为了五组训练集和一组测试集,这样子,每组就有10000张随机组成的图片。虽然是随机的,但是在训
- Caffe学习笔记(二)分类任务
yaoyz105
#Caffe深度学习
笔记(二):用Caffe训练好的模型进行分类任务的测试参考:Caffe学习系列(20):用训练好的caffemodel来进行分类用Caffe搭建自己的网络,并用图片进行测试开发caffe的贾大牛团队,利用imagenet图片和caffenet模型训练好了一个caffemodel,该模型可以用来做分类任务。1.准备模型和数据1)caffemodel下载:bvlc_reference_caffenet
- 【caffe学习笔记——cifar10】win10+caffe环境下cifar10运行
文章被改为VIP本文并不知情,且无法修改
caffe入门笔记
本人初学深度学习——caffe框架,想用几个实例来入门,cifar10为其中之一,在参考了博主汽车数据技术前瞻的帖子:http://blog.csdn.net/lance313/article/details/53964874之后,将学习内容进行了总结,总结的内容基本和我参考的帖子差不多,主要目的是加深印象并方便以后查阅。##cifar数据集的介绍##Cifar-10是由Hinton的两个大弟子A
- caffe学习笔记
Gzzgz
caffe
转自http://blog.csdn.net/u011762313/article/details/4730600目录:安装与配置Tutorial学习PyCaffe学习buildtools学习其他安装与配置Ubuntu14.04安装Caffe(仅CPU)Ubuntu14.04安装CudaUbuntu14.04安装Caffe(GPU)Ubuntu14.04CuDNN安装(Caffe+Cuda7.0下
- 【caffe学习笔记之5】Win10系统下Caffe的Python接口设置方法并绘制网络结构图
Shuai__
pythoncaffe
【准备工作】前面几节介绍了win10系统下caffe-master的配置方法以及cifar10数据集的训练方法,并简要介绍了Matlab接口如何配置。想要更为形象的了解caffe框架下诸多网络模型的具体内涵,需要借助python接口的caffe.draw绘制网络图,因此,本节介绍caffe的Python接口配置方法。安装python使用anaconda版本,anaconda里面集成了很多关于pyt
- 【caffe学习笔记之8】Caffe运行Faster-RCNN算法实现目标检测(1)
Shuai__
Matlabcaffe深度学习
【Faster-RCNN算法】FasterR-CNN(其中R对应于“Region(区域)”)是基于深度学习R-CNN系列目标检测最好的方法。使用VOC2007+2012训练集训练,VOC2007测试集测试mAP达到73.2%,目标检测的速度可以达到每秒5帧。技术上将RPN网络和FastR-CNN网络结合到了一起,将RPN获取到的proposal直接连到ROIpooling层,是一个CNN网络实现端
- 【caffe学习笔记之6】caffe-matlab/python训练LeNet模型并应用于mnist数据集(1)
Shuai__
深度学习caffepythonMatlab
【案例介绍】LeNet网络模型是一个用来识别手写数字的最经典的卷积神经网络,是YannLeCun在1998年设计并提出的,是早期卷积神经网络中最有代表性的实验系统之一,其论文是CNN领域第一篇经典之作。本篇博客详细介绍基于Matlab、Python训练lenet手写模型的案例,作为前几次caffe深度学习框架的阶段性总结。【数据准备】数据下载地址:http://yann.lecun.com/exd
- caffe学习笔记6-matlab接口总结
YiLiang_
caffe
第一部分:用matlab接口操作网络,包括网络生成,数据读取及修改,存储caffeemodel,返回layer的类型1.设置网络:model='./models/bvlc_reference_caffenet/deploy.prototxt';weights='./models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel';
- caffe学习笔记(一)
SHERO_M
caffe
ubuntu14.04.1下caffe的安装(cpumode)准备工作,安装各种依赖和OpenCV,代码如下:sudoapt-getinstalllibprotobuf-devlibleveldb-devlibsnappy-devlibopencv-devlibhdf5-serial-devprotobuf-compilersudoapt-getinstall--no-install-recomm
- 【caffe学习笔记之4】利用MATLAB接口运行cifar数据集
Shuai__
MatlabcaffeComputerVision深度学习
【前期准备工作】参考上篇帖子:http://write.blog.csdn.net/postedit/539648741.确保模型训练成功,生成模型文件:cifar10_quick_iter_4000.caffemodel及均值文件:mean.binaryproto。注意,此处一定是生成caffemodel格式的模型文件,而非.h5模型文件,否则会导致Matlab运行崩溃。如何生成caffemod
- caffe学习笔记21-VggNet论文笔记
YiLiang_
caffedeeplearning
AlexNet输入要求256(图像大小),均值是256的,减均值后再crop到227(输入图像大小)VGGNet输入要求256(图像大小),均值是256的,减均值后再crop到224(输入图像大小)Vgg-Net:笔记CNNimprovement:有很多对其提出的CNN结构进行改进的方法。例如:1.Usesmallerreceptivewindowsizeandsmallerstrideofthe
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1