非参数检验是在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态进行推断的方法。它利用数据的大小间的次序关系(秩Rank),而不是具体数值信息,得出推断结论。
它是参数检验所需要的某些条件不满足时所使用的方法。
和参数检验相比,非参数检验的优势如下:
劣势:
非参数性检验的方法非常多,基于方法的检验功效性角度,本文只涉及
曼-惠特尼U检验(曼-惠特尼秩和检验),是由H.B.Mann和D.R.Whitney于1947年提出的。它假设两个样本分别来自除了总体均值以外完全相同的两个总体,目的是检验这两个总体的均值是否有显著的差别。
函数及格式:wilcox.test(y~x,data)
其中,y是连续变量,x是一个二分变量。
也可以使用这种形式:
wilcox.test(y1,y2)
其中,y1和y2为变量名。可选参数data的取值为一个包含这些变量的矩阵或数据框。
示例:
#载入MASS包
library(MASS)
#使用UScrime数据集
#Prob为监禁率,So为是否南方地区
#检验美国监禁率是否存在南方和非南方差异
#wilcox.test检验
wilcox.test(Prob~So,data = UScrime)
#结果
Wilcoxon rank sum test
data: Prob by So
W = 81, p-value = 8.488e-05
alternative hypothesis: true location shift is not equal to 0
#结果显示P小于0.001,美国监禁率存在南方和非南方地区差异。
Wilcoxon配对秩和检验是对Sign符号检验的改进。它的假设被归结为总体中位数是否为0。
Wilcoxon配对秩和检验调用函数格式与Mann-Whitney U检验相同。不同之处在于可以添加paired=TRUE参数。
示例:
#u1(14-24岁年龄段城市男性失业率)
#u2(35-39岁年龄段城市男性失业率)
#检验失业率是否在两个年龄段存在差异
#Wilcoxon配对秩和检验
with(UScrime,wilcox.test(U1,U2,paired = TRUE))
#结果
Wilcoxon signed rank test with continuity correction
data: U1 and U2
V = 1128, p-value = 2.464e-09
alternative hypothesis: true location shift is not equal to 0
#结果显示,存在差别。
由克罗斯考尔和瓦里斯1952年提出,用来解决多独立样本难以满足方差分析条件(独立性、正态性、方差齐性)时统计推断问题。
函数格式:
kruskal.test(y~A,data)
其中,y为连续变量,A为两个或更多水平的分组变量。
示例:
#检验美国四个地区文盲率是否存在差异
#数据皆来自R自带数据集
#通过state.region数据集获取地区名称,即分组变量。
states <- data.frame(state.region,state.x77)
#调用kruskal.test函数
kruskal.test(Illiteracy~state.region,data = states)
#结果
Kruskal-Wallis rank sum test
data: Illiteracy by state.region
Kruskal-Wallis chi-squared = 22.672, df = 3, p-value =
4.726e-05
#结果显示,文盲率存在地区差异。
Friedman检验也称弗里德曼双向评秩方差分析。由Friedman在1937年提出,基本思想是独立对每一个区组分别对数据进行排秩,消除区组间的差异以检验各种处理之间是否存在差异。
Fiedman检验在样本量有限的情况下,实际应用价值不大。
函数格式:
friedman.test(y~A|B,data)
其中,y为连续变量,A是一个分组变量,B是一个用以认定匹配观测的区组变量。
或者
friedman.test(data=matrix格式)
其中,data要求矩阵格式。可以通过as.matrix转换
示例:
(虚构)有30名女性分为三组每组10人,试吃三种药。经过一段时间后,药效如下。问三种药药效是否有区别。
药1
4.4,5,5.8,4.6,4.9,4.8,6,5.9,4.3,5.1
药2
6.2,5.2,5.5,5,4.4,5.4,5,6.4,5.8,6.2
药3
7.0,6.2,5.9,6,4.6,6.4,5,6.4,5.8,6.2
#生成数据集
drug1 <- c(4.4,5,5.8,4.6,4.9,4.8,6,5.9,4.3,5.1)
drug2 <- c(6.2,5.2,5.5,5,4.4,5.4,5,6.4,5.8,6.2)
drug3 <- c(7.0,6.2,5.9,6,4.6,6.4,5,6.4,5.8,6.2)
#矩阵
data <- matrix(c(drug1,drug2,drug3),nrow = 10,dimnames = list(ID=1:10,c('drug1','drug2','drug3')))
#查看数据
data
ID drug1 drug2 drug3
1 4.4 6.2 7.0
2 5.0 5.2 6.2
3 5.8 5.5 5.9
4 4.6 5.0 6.0
5 4.9 4.4 4.6
6 4.8 5.4 6.4
7 6.0 5.0 5.0
8 5.9 6.4 6.4
9 4.3 5.8 5.8
10 5.1 6.2 6.2
#调用friedman.test函数
friedman.test(data)
Friedman rank sum test
data: data
Friedman chi-squared = 6.8889, df = 2, p-value =
0.03192
#结果显示,三种药之间存在区别。
R 语 言 小 白 速 通 R语言小白速通 R语言小白速通
懂 点 R 语 言 懂点R语言 懂点R语言
欢 迎 分 享 收 藏 关 注 欢迎分享收藏关注 欢迎分享收藏关注