CUSUM算法在变点检测中的应用

       变点检测在很多场合都有使用,例如在机器故障的检测以及各种信号突变的监测等等。变点检测一般就是根据信号序列的统计特性发生改变进行判定,常用的统计特征包括前期数据的均值和方差、残差等。很明显当信号序列发生突变时会改变一些统计特征,比较直观的就是均值和方差会进行改变,最简单的方式是我们可以根据这种改变进行合理设置阈值,超过设定的阈值时就可以判定突变发生。

CUSUM控制图简介

       CUSUM是一种时间加权控制图,显示每个样本值与目标值的偏差的累积和 。通常CUSUM控制图分为参数化和非参数化,在实际应用中由于难以对参数进行估计,特别是获取信号的概率分布比较难时,因此大多数选择非参数CUSUM控制图。在变点检测中,主要是对变点是否发生变化以及发生时刻进行估计。CUSUM算法是统计过程中常用的算法,它最初是由Page在1954年提出的,随后许多学者对此算法进行了深入的研究。CUSUM算法的理论基础是序贯分析原理中的序贯概率比检验(sequentialprobability ratio test, SPRT)理论。CUSUM设计思想是对样本数据信息加以累积,将过程的小偏移累积起来,达到放大的效果,从而提高检测过程中对小偏移的灵敏度。由于使用方便、判断准则简单、易于操作等原因,CUSUM算法在工业质量控制、自动故障监测、经济、金融等方而应用广泛。

CUSUM理论分析

       cusum主要研究信号均值和方差信息判断系统是否发生了变化,其主要思想是:当监测量的CUSUM明显比正常平稳运行条件下的平均水平高或者低的时候,就意味着系统发生了变化。

       以下是写在纸上的几个公式,理解一下用markdown写一遍真的很不轻松。。。

用3个tips解释这个过程

step1: 信号序列在未发生突变之前,CUSUM统计量g(k)是一个在0附近随机波动的变量。

step2:信号发生突变,当发生正向偏移时g(k+)就会不断增大,也就是一个累计的过程。当发生反向偏移时g(k-)不断累计。

step3:当累积达到一定的程度(超过设定的阈值)时就可以认为已经发生了信号突变,这样暂态信号就监测出来了。根据延迟时间d还可以推算出发生信号突变的时间。

基于滑动窗的CUSUM变点检测试验过程

未完待续。。。

你可能感兴趣的:(数字信号处理与模式识别)