- 【python】在【机器学习】与【数据挖掘】中的应用:从基础到【AI大模型】
小李很执着
杂乱无章机器学习数据挖掘python人工智能语言模型
目录一、Python在数据挖掘中的应用1.1数据预处理数据清洗数据变换数据归一化高级预处理技术1.2特征工程特征选择特征提取特征构造二、Python在机器学习中的应用2.1监督学习分类回归2.2非监督学习聚类降维三、Python在深度学习中的应用3.1深度学习框架TensorFlowPyTorch四、Python在AI大模型中的应用4.1大模型简介4.2GPT-4o实例五、实例验证5.1数据集介绍
- 如何有效的学习AI大模型?
Python程序员罗宾
学习人工智能语言模型自然语言处理架构
学习AI大模型是一个系统性的过程,涉及到多个学科的知识。以下是一些建议,帮助你更有效地学习AI大模型:基础知识储备:数学基础:学习线性代数、概率论、统计学和微积分等,这些是理解机器学习算法的数学基础。编程技能:掌握至少一种编程语言,如Python,因为大多数AI模型都是用Python实现的。理论学习:机器学习基础:了解监督学习、非监督学习、强化学习等基本概念。深度学习:学习神经网络的基本结构,如卷
- 机器学习在医学中的应用
听忆.
机器学习人工智能
边走、边悟迟早会好机器学习在医学中的应用是一个广泛且复杂的领域,涵盖了从基础研究到临床应用的多个方面。以下是一个万字总结的结构性思路,分章节深入探讨不同应用场景、技术方法、挑战与未来展望。1.引言背景与发展:介绍医学领域的数字化转型以及机器学习的兴起,探讨其在医学中的潜力。机器学习的基本概念:简要介绍机器学习的基本原理、分类(监督学习、非监督学习、强化学习等)和常用算法(如神经网络、支持向量机、随
- 每天一个数据分析题(四百八十七)- 非监督学习
跟着紫枫学姐学CDA
数据分析题库数据分析学习数据挖掘
关于非监督学习,在K-means聚类分析使用的距离是()A.欧式距离B.绝对距离C.Minkowski距离D.笛卡尔距离数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练习题库,数据分析从业者刷题必备神器!
- 每天一个数据分析题(四百八十八)- 非监督学习
跟着紫枫学姐学CDA
数据分析题库数据分析学习数据挖掘
关于非监督学习,在K-means聚类分析使用的距离是()A.欧式距离B.绝对距离C.Minkowski距离D.笛卡尔距离数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练习题库,数据分析从业者刷题必备神器!
- 深度学习如何入门?
nanshaws
yolov5深度学习
深度学习是机器学习的一个子领域,它基于人工神经网络的研究。入门深度学习可以分为以下几个步骤:基础知识准备:(1)掌握基础数学知识,特别是线性代数、概率论和统计学、微积分。(2)学习编程语言,Python是目前最流行的深度学习语言,因其简洁易学且有大量的库支持。(3)了解机器学习基础,包括监督学习和非监督学习的概念、模型评估与选择等。学习深度学习理论:(1)理解神经网络的基本组成,如神经元、激活函数
- 机器学习基础(一)理解机器学习的本质
昊昊该干饭了
人工智能python机器学习人工智能python
导读:在本文中,将深入探索机器学习的根本原理,包括基本概念、分类及如何通过构建预测模型来应用这些理论。目录机器学习机器学习概念相关概念机器学习根本:模型数据的语言:特征与标签训练与测试:模型评估机器学习的分类监督学习:有指导的学习过程非监督学习:自我探索的过程强化学习:通过试错学习构建与分析鸢尾花数据模型鸢尾花数据集简介加载数据集创建和训练模型进行预测与评估模型机器学习机器学习概念机器学习是人工智
- 机器学习---强化学习
三月七꧁ ꧂
机器学习机器学习人工智能
1.什么是强化学习在连接主义学习中,在学习的方式有三种:非监督学习(unsupervisedlearning)、监督学习(supervisedleaning)和强化学习。监督学习也称为有导师的学习,需要外界存在一个“教师”对给定输入提供应有的输出结果,学习的目的是减少系统产生的实际输出和预期输出之间的误差,所产生的误差反馈给系统来指导学习。非监督学习也称为无导师的学习。它是指系统不存在外部教师指导
- 机器学习之监督学习和非监督学习
华农DrLai
机器学习学习人工智能深度学习
监督学习(SupervisedLearning)监督学习是一种学习方式,其中模型从标记的训练数据中学习。这意味着每个训练样本都是由输入向量和相应的目标输出(也称为标签)组成的。模型的任务是学习输入到输出的映射函数,以便当提供新的、未见过的数据时,模型能够预测出正确的输出。例子:邮件分类:根据邮件内容将邮件自动分类为“垃圾邮件或“非垃圾邮件”。这里,邮件内容是输入,而“垃圾邮件“或“非垃圾邮件”的非
- 如何入行人工智能
科联学妹
人工智能
要成功入行人工智能领域,一个坚实的基础是不可或缺的。这个基础包括数学、Python编程以及数据结构与算法的深厚理解。这些知识为深入探索机器学习、深度学习和自然语言处理(NLP)等更高级领域铺平了道路。机器学习作为人工智能的核心,其基本理论涵盖了机器学习的定义、不同类型(如监督学习、非监督学习、强化学习)以及它们的主要应用场景。对于监督学习,我们需要熟悉线性回归、逻辑回归、决策树、随机森林和支持向量
- 【吴恩达机器学习】第八周—聚类降维Kmeans算法
Sunflow007
31.jpg1.聚类(Clustering)1.1介绍之前的课程介绍的都是监督学习、而聚类属于非监督学习,在一个典型的监督学习中,我们有一个有标签的训练集,我们的目标是找到能够区分正样本和负样本的决策边界,在这里的监督学习中,我们有一系列标签,我们需要据此拟合一个假设函数。与此不同的是,在非监督学习中,我们的数据没有附带任何标签,我们拿到的数据就是这样的:1.png在这里我们有一系列点,却没有标签
- 基于WGAN-GP方法的时间序列信号生成(以轴承振动信号为例)
哥廷根数学学派
信号处理图像处理故障诊断算法人工智能深度优先python
生成对抗网络GAN作为非监督学习,由生成器和判别器两个神经网络构成。生成器从潜在空间中随机取样作为输入,试图生成与真实样本数据相仿的数据。判别器的输入则为真实样本数据或生成器生成数据,进而判断其输入是真实数据还是生成数据。两个网络相互对抗、不断调整参数,最终目的是使判别网络无法判断生成网络的输出结果是否真实。WGAN作为GAN的改进模型,使用Wasserstein距离来替代JS散度作为优化目标,从
- 聚类(Clustering)理论
时间邮递员
聚类人工智能机器学习
一、无监督学习介绍在这小节中,我将开始介绍聚类算法,这是我们学习的第一个非监督学习算法,我们将要让计算机学习无标签数据而不是此前的标签数据。那么什么是非监督学习呢?在学习机器学习知识的开始我曾简单地介绍过非监督学习,然而我还是有必要将其与监督学习做一下比较。在一个典型的监督学习中我们有一个有标签的训练集,我们的目标是找到能够区分正样本和负样本的决策边界,我们有一系列标签并且我们需要据此拟合一个假设
- About_Machine_Learning_in_action
煮茶温酒曲终人散
#监督学习######仅仅是个人理解对于机器学习,分为监督学习和非监督学习,今天的监督学习仅仅作为自己的学习记录一个数据,有他的类别,一群数据都有他们的类别,而新加入的数据却没有类别,那么监督学习就是以已知分类去区分未知分类没有例子,这就是感悟
- 【吴恩达·机器学习】第一章:机器学习绪论:监督学习和非监督学习
是瑶瑶子啦
机器学习学习人工智能监督学习非监督学习
文章目录0、声明1、前言:Part1/Week1学习总结2、机器学习绪论2.1:什么是机器学习2.2:监督学习2.2.1:回归2.2.2:分类2.2.3:回归和分类对比:2.3:非监督学习2.3.1:聚类博主简介:努力学习的22级计算机科学与技术本科生一枚博主主页:@是瑶瑶子啦每日一言:勇敢的人,不是不落泪的人,而是愿意含着泪继续奔跑的人。——《朗读者》0、声明本系列博客文章是博主本人根据吴恩达老
- 聚类(Clustering)
清☆茶
聚类数据挖掘机器学习
1.无监督学习:简介在非监督学习中,我们的数据没有附带任何标签,我们拿到的数据就是这样的:督学习中,我们需要将一系列无标签的训练数据,输入到一个算法中,然后我们告诉这个算法,快去为我们找找这个数据的内在结构给定数据。我们可能需要某种算法帮助我们寻找一种结构。图上的数据看起来可以分成两个分开的点集(称为簇),一个能够找到我圈出的这些点集的算法,就被称为聚类算法。问题:聚类算法一般用来做什么呢?比如市
- 《深度学习之美》读书笔记章三
wenju_song
这一篇文章介绍第三章机器学习的分类。第三章“机器学习”三重门,“中庸之道”趋若人机器学习分为三大类:监督学习,非监督学习,半监督学习3.1监督学习3.1.1感性认知监督学习监督学习:从有标签的训练数据中学习模型,然后给定某个新数组,利用模型预测它的标签。这里的标签可以理解为事物的分类。3.1.2监督学习的形式化描述在监督学习中,根据目标预测变量的类型不同,可以分为回归分析和分类学习。回归分析包括:
- Python入门之机器学习(非常详细)篇幅拉满,一般人看不完!
码农必胜客
Python零基础入门python机器学习开发语言
一、什么是机器学习什么是机器学习?机器学习其实就是想让计算机像人一样思考而研发出的计算机理论,目前常用的机器学习有以下几种算法:监督学习supervisedlearning;非监督学习unsupervisedlearning;半监督学习semi-supervisedlearning;强化学习reinforcementlearning;监督学习是不断向计算机提供数据(特征),并告诉计算机对应的值(标
- 机器学习之卷积神经网络
WEL测试
人工智能机器学习cnn人工智能
卷积神经网络是一类包含卷积计算且具有深度结构的前馈神经网络,是深度学习的代表算法之一。卷积神经网络具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类,因此又称为SIANN。卷积神经网络仿照生物的视知觉机制构建,可以进行监督学习和非监督学习,其隐含层内的卷积核参数共享和层间连接的稀疏性使得卷积神经网络能够以较小的计算量对格点化特征进行学习。卷积神经网络的结构包括:输入层、卷积层、池化层、全
- 机器学习:李航 统计学习方法 笔记
lealzhan
机器学习算法
詹令
[email protected]待整理统计学习方法监督学习非监督学习半监督学习强化学习监督学习方法生成方法GenerativeApproach:P(Y∣X)=P(X,Y)P(X)P(Y|X)=\frac{P(X,Y)}{P(X)}P(Y∣X)=P(X)P(X,Y)朴素贝叶斯模型隐式马尔科夫模型判别方法DiscrimitiveApproach:k近邻/knn线性分类模型感知机
- 【非监督学习 02】高斯混合模型
一碗姜汤
机器学习机器学习人工智能
高斯混合模型(GuassianMixedModel,GMM)也是一种常见的聚类算法,与K均值算法类似,同样使用了EM算法进行迭代计算。高斯混合模型假设每个簇的数据都是符合高斯分布的,当前数据呈现的分布就是各个簇的高斯分布叠加在一起的结果。图5.6是一个数据分布的样例,如果只用一个高斯分布来拟合图中的数据,图中所有的椭圆即为高斯分布的二倍标准差所对应的椭圆。直观来说,图中的数据明显分为两簇,因此只用
- 梯度下降法(Gradient Descent)
Debroon
#机器学习#凸优化
梯度下降法(GradientDescent)梯度下降法批量梯度下降法随机梯度下降法scikit-learn中的随机梯度下降法小批量梯度下降法梯度下降法梯度下降法,不是一个机器学习算法(既不是再做监督学习,也不是非监督学习,分类、回归问题都解决不了),是一种基于搜索的最优化方法。梯度下降法作用是,最小化一个损失函数;而如果我们要最大化一个效用函数,应该使用梯度上升法。这个二维平面描述了,当我们定义了
- 基于贝叶斯决策理论的分类器
CHENG-HQ
机器学习机器学习贝叶斯分类器参数估计
基于贝叶斯决策理论的分类器基于贝叶斯决策理论的分类器贝叶斯决策理论1如何衡量分类好坏参数估计1极大似然估计2最大后验概率估计3最大熵估计4非参数估计贝叶斯分类器在现实中的应用1垃圾邮件分类2贝叶斯网络参考文献首先,我们知道机器学习分为监督学习和非监督学习两大类。在监督学习中,我们主要面对的是拟合问题(regression)和分类问题(classification)。在本节中,我们先来了解一下如何使
- Week9
kidling_G
第9周十五、异常检测(AnomalyDetection)15.1问题的动机参考文档:15-1-ProblemMotivation(8min).mkv在接下来的一系列视频中,我将向大家介绍异常检测(Anomalydetection)问题。这是机器学习算法的一个常见应用。这种算法的一个有趣之处在于:它虽然主要用于非监督学习问题,但从某些角度看,它又类似于一些监督学习问题。什么是异常检测呢?为了解释这个
- day4--GPT/GPT2.0
呆呆有库
深度学习transformer神经网络
目录GPTGPT训练的两个阶段:GPT的架构图:自注意力机制:GPT-2GPT-2的架构图:GPTGPT训练的两个阶段:第一个阶段是Pre-training阶段,主要利用大型语料库完成非监督学习;第二阶段是Fine-tuning,针对特定任务在相应数据集中进行监督学习,通过Fine-tuning技术来适配具体任务。GPT的架构图:自注意力机制:下图中,每一层的所有Trm属于一个自左向右的单向tra
- 【Apriori算法Java实现版】聚类算法与关联分析
张照博
正文之前当初毕设的时候准备用这个算法来着,不过后来为了给自己减少工作量(俗称偷懒),就没搞了,没想到这两天看一篇论文看到了这个,重新捡起来学一下。对于我这种算法底子不是很好的来说。。只能代码实现来感受下了。。正文基本概念关联分析是一种在大规模数据集中寻找有趣关系的非监督学习算法。这些关系可以有两种形式:频繁项集或者关联规则。频繁项集(frequentitemsets)是经常出现在一块的物品的集合,
- 机器学习一些概念
satadriver
机器学习机器学习人工智能
LDA:LDA最大化类间距离,最小化类内距离,使得投影后的不同类别的样本分的更开,属于监督学习。PCA:PCA最小重构误差,使得投影后的值和原来的值尽量接近,属于非监督学习。SVM:最大间隔的优化模型CART算法ID3算法GINI算法C4.5算法Novikoff定理:模糊C均值算法:J(U,V)=∑i=1n∑j=1kuijmdij2∑j=1kuij=1,uij∈[0,1]J(U,V)=\sum_{
- 机械学习 - 基础概念 - scikit-learn - 数据预处理 - 1
沐 修
机器学习scikit-learnpython机器学习
目录安装scikit-learn术语理解1.特征(feature)和样本(sample/demo)的区别?2.关于模型的概念一、机械学习概念1.监督学习总结:2.非监督学习总结:3.强化学习总结:三种学习的特点总结scikit-learn说明二、机械学习的基本实操逻辑1.采集数据2.数据预处理(Preprocessing)预处理算法:归一化:1.normalize()3.数据降维处理(Dimens
- 监督学习和非监督学习有什么区别?监督学习又可分为哪两类任务?
北辰Charih
学习机器学习python
监督学习和非监督学习是机器学习的两种主要类型,它们的区别在于训练数据的标签是否已知。监督学习:训练数据包含输入特征和对应的标签或输出值。模型通过学习输入特征和对应的输出值之间的关系,从而预测新的输入数据的输出值。监督学习的目标是寻找一个函数,将输入映射到输出。监督学习是一种通过使用带有标签的训练数据来训练模型的方法。在监督学习中,模型通过学习输入特征和对应的输出标签之间的关系来进行预测。监督学习的
- 单细胞转录组数据分析课件||7. Clustering of scRNA-seq data
周运来就是我
单细胞分析的一个亮点就是可以找出细胞的异质性,也就是可以对细胞进行分群,找出有意思的亚群。所以这节课很重要:数据聚类。数据质控:选择高质量的数据进行聚类特征选择什么叫聚类为什么说聚类是非监督学习如何面对不同聚类算法得到的不同的结果介绍了几种常见的聚类算法ThislecturebyAhmedMahfouz(LeidenComputationalBiologyCenter,LUMC,Netherlan
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$