【BZOJ1041】圆上的整点(数论)

题面

BZOJ
洛谷

题解

好神仙的题目啊。
安利一个视频,大概是第 7 7 19 19 分钟的样子
因为要质因数分解,所以复习了一下 Pollard_rho P o l l a r d _ r h o

#include
#include
#include
#include
#include
#include
#include
using namespace std;
#define ll long long
int n,ans=1;
int fpow(int a,int b,int MOD)
{
    int s=1;
    while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
    return s;
}
bool Miller_Rabin(int n)
{
    if(n==2)return true;
    for(int tim=10;tim;--tim)
    {
        int a=rand()%(n-2)+2,p=n-1;
        if(fpow(a,p,n)!=1)return false;
        while(!(p&1))
        {
            p>>=1;int nw=fpow(a,p,n);
            if(1ll*nw*nw%n==1&&nw!=1&&nw!=n-1)return false;
        }
    }
    return true;
}
vector<int> fac;
int Pollard_rho(int n,int c)
{
    int i=0,k=2,x=rand()%(n-1)+1,y=x;
    while(233)
    {
        ++i;x=(1ll*x*x%n+c)%n;
        int d=__gcd((y-x+n)%n,n);
        if(d!=1&&d!=n)return d;
        if(x==y)return n;
        if(i==k)y=x,k<<=1;
    }
}
void Fact(int n,int c)
{
    if(n==1)return;
    if(Miller_Rabin(n)){fac.push_back(n);return;}
    int p=n;while(p>=n)p=Pollard_rho(p,c--);
    Fact(p,c);Fact(n/p,c);
}
int main()
{
    cin>>n;Fact(n,233);sort(fac.begin(),fac.end());
    for(int i=0,l=fac.size(),pos;i1)
    {
        int cnt=1;
        pos=i;while(pos1&&fac[i]==fac[pos+1])++pos,++cnt;
        if(fac[i]==2)continue;
        if(fac[i]%4==1)ans=ans*(cnt*2+1);
    }
    printf("%d\n",ans*4);
    return 0;
}

你可能感兴趣的:(BZOJ,各省省选)