- PyTorch学习(13):PyTorch的张量相乘(torch.matmul)
赛先生.AI
PyTorchpytorch
PyTorch学习(1):torch.meshgrid的使用-CSDN博客PyTorch学习(2):torch.device-CSDN博客PyTorch学习(9):torch.topk-CSDN博客PyTorch学习(10):torch.where-CSDN博客PyTorch学习(11):PyTorch的形状变换(view,reshape)与维度变换(transpose,permute)-CSDN
- PyTorch实现CIFAR-10分类代码
曹勖之
PyTorch学习之路深度学习pytorch
这篇是PyTorch学习之路第七篇,用于记录PyTorch实现CIFAR-10分类代码(书上的代码有好多冗余)目录完整代码(还未训练)完整代码(已训练,直接载入模型)下面实例数据集位于:C:\Users\22130\Learning_Pytorch\dataset完整代码(还未训练)importtorchimporttorchvisionimporttorchvision.transformsas
- PyTorch学习笔记之基础函数篇(四)
熊猫Devin
深度学习之PyTorchpytorch学习笔记
文章目录2.8torch.logspace函数讲解2.9torch.ones函数2.10torch.rand函数2.11torch.randn函数2.12torch.zeros函数2.8torch.logspace函数讲解torch.logspace函数在PyTorch中用于生成一个在对数尺度上均匀分布的张量(tensor)。这意味着张量中的元素是按照对数间隔排列的,而不是线性间隔。这对于创建在数
- 深入浅出PyTorch学习网址
今天是学习的一天
人工智能
https://datawhalechina.github.io/thorough-pytorch/
- Pytorch学习记录-接近人类水平的GEC(使用混合机器翻译模型)
我的昵称违规了
五月第二周要结束了,接下来的三个月主要是文献阅读,准备8、9月的开题报告,技术类的文献集中在GEC和Textmaching的应用方面,读完之后找demo复现,然后应用。理论方面的论文也都是英文的8.NearHuman-LevelPerformanceinGrammaticalErrorCorrectionwithHybridMachineTranslation昨天一天没看论文,发现我文献阅读速度太
- Pytorch学习准备_Pycharm及Jupyter使用
写点什么呢
学习记录pytorch学习人工智能pythonpycharm
已经创建环境pytorch01,可参考http://t.csdnimg.cn/KwJvh一.pytorch环境查看打开AnacondaPrompt进入pytorch01环境condaactivatepytorch01列出这个环境下的工具包piplist二.Pycharm打开,创建新项目2.1选择“现有指示器"(笔者使用此法未成功,使用的是2.2)找到你自己的pytorch位置笔者如图可以看到解释器
- Pytorch学习01_加载数据初认识
写点什么呢
pytorch学习人工智能pythonpycharmpipipython
一.Dataset新建py文件fromtorch.utils.dataimportDataset可以按住”Ctrl“,鼠标左键点击Dataset,可以打开Dataset的定义及其内部函数二.编写引用cv2模块终端运行pipinstallopencv-python然后就可以引用cv2模块importcv2引用ImagefromPILimportImage数据集链接https://pan.baidu.
- Pytorch学习02_TensorBoard使用01
写点什么呢
学习记录pytorch学习人工智能pythonpycharm
更换编辑器找到自己的Anaconda安装路径下envs\pytorch01中的oython.exe,pytorch01是笔者自己创建的pytorch环境名选择好后,点击确定点击“应用”,再点击“确定”在pytorch环境下安装tensorboardpipinstallpytorch安装结束writer.add_scalar("y=x",i,i)运行如下内容fromtorch.utils.tenso
- Pytorch学习03_TensorBoard使用02
写点什么呢
学习记录pytorch学习人工智能pycharmpython
Opencv读取图片,获得numpy型数据类型复制图片的相对路径目前这种type不适用,考虑用numpy类型安装opencv,在pytorch环境下pipinstallopencv-python导入numpyimportnumpyasnp将PIL类型的img转换为NumPy数组img_array=np.array(img)HWC三通道H:高度W:宽度C:通道fromtorch.utils.tens
- 【pytorch学习】关于torch.nn.MaxPool2d和torch.nn.functional.max_pool2d
你好,我老婆不吃香菜
pytorch深度学习
两者之间的区别与联系首先给出结论,torch.nn.MaxPool2d和torch.nn.functional.max_pool2d两者本质上是一样的。具体可以参考torch.nn.MaxPool2d的源代码,核心源代码如下所示:from..importfunctionalasFclassMaxPool2d(_MaxPoolNd):kernel_size:_size_2_tstride:_size
- Pytorch学习记录-GEC语法纠错
我的昵称违规了
Pytorch学习记录-GEC语法纠错01五月第一周要结束了,接下来的三个月主要是文献阅读,准备8、9月的开题报告,技术类的文献集中在GEC和Textmaching的应用方面,读完之后找demo复现,然后应用。理论方面的论文也都是英文的,国内这块做的真的不行啊……学习计划GEC概念AlibabaatIJCNLP-2017Task1:EmbeddingGrammaticalFeaturesintoL
- PyTorch(超详细)部署与激活 举起Python火炬,点亮智慧人生【Windows版】
心安成长
PyTorchpythonpytorchwindows
AI时代,我们不仅要学习Python,同时机器学习,深度学习利器也要逐步掌握,再次开始Pytorch学习教程记录。PyTorch是一个流行的开源深度学习框架,它可以用于构建、训练和部署各种机器学习和深度学习模型。PyTorch可以用于以下领域:计算机视觉:图像分类、目标检测、图像分割、人脸识别等。自然语言处理:机器翻译、文本分类、情感分析、问答系统等。语音处理:语音识别、语音合成、说话人识别等。生
- Pytorch学习记录-卷积Seq2Seq(模型训练)
我的昵称违规了
Pytorch学习记录-torchtext和Pytorch的实例50.PyTorchSeq2Seq项目介绍在完成基本的torchtext之后,找到了这个教程,《基于Pytorch和torchtext来理解和实现seq2seq模型》。这个项目主要包括了6个子项目使用神经网络训练Seq2Seq使用RNNencoder-decoder训练短语表示用于统计机器翻译使用共同学习完成NMT的堆砌和翻译打包填充
- Python-Pytorch学习记录
yt_0618
学习
目录1.python-pycharm下载安装2.VSCode下载安装3.MATLAB下载安装4.pytorch一条龙下载安装环境配置1.python-pycharm下载安装pycharm从安装到全副武装,学起来才嗖嗖的快,图片超多,因为过度详细!_pycharm下载和环境配置-CSDN博客https://chuanchuan.blog.csdn.net/article/details/119934
- pytorch学习笔记(2)--Tensor
ToToBe
pytorch笔记1024程序员节
系列文章pytorch学习笔记(1)–QUICKSTARTpytorch学习笔记(2)–Tensorpytorch学习笔记(3)–数据集与数据导入pytorch学习笔记(4)–创建模型(BuildModel)pytorch学习笔记(5)–Autograd文章目录系列文章Tensor(张量)1.初始化张量2.张量的属性3.张量的操作1.类似numpy的索引和切片2.拼接3.算数操作4.单元素张量5.
- PyTorch学习笔记(三):softmax回归
FriendshipT
PyTorch学习笔记pytorch回归深度学习softmax
PyTorch学习笔记(三):softmax回归softmax回归分类问题softmax回归模型单样本分类的矢量计算表达式小批量样本分类的矢量计算表达式交叉熵损失函数模型预测及评价小结Torchvision获取数据集读取小批量PyTorch从零开始实现softmax获取和读取数据初始化模型参数实现softmax运算定义模型定义损失函数定义优化算法计算分类准确率训练模型预测小结PyTorch模块实现
- PyTorch学习:加载模型和参数
TravelingLight77
DLPytorchpytorch深度学习神经网络
1.直接加载模型和参数加载别人训练好的模型:#保存和加载整个模型torch.save(model_object,'resnet.pth')model=torch.load('resnet.pth')2.分别加载网络的结构和参数#将my_resnet模型储存为my_resnet.pthtorch.save(my_resnet.state_dict(),"my_resnet.pth")#加载resne
- PyTorch学习笔记1
zt_d918
训练过程importtorch#batch_size,input_dimension,hidden_dimension,output_dimensionN,D_in,H,D_out=64,1000,100,10#模拟一个训练集x=torch.randn(N,D_in)y=torch.randn(N,D_out)#模型定义有多种方式,这里不提model#loss函数定义loss_fn=torch.n
- 第二十九周:文献阅读笔记(ResMLP)+ pytorch学习(Resnet代码实现)
@默然
笔记pytorch学习人工智能python深度学习机器学习
第二十九周:文献阅读笔记(ResMLP)摘要Abstract1.ResMLP1.1文献摘要1.2文献引言1.3ResMLP方法1.3.1整体流程1.3.2残差多感知机层1.4实验1.4.1数据集1.4.2超参数设置1.4.3主要结果1.4.4监督设置1.4.5自监督设置1.4.5知识蒸馏设置1.5ResMLP的创新点2.pytorch学习(ResNet代码实现)2.1数据集2.2文件结构2.3下载
- 第二十八周:文献阅读笔记(弱监督学习)+ pytorch学习
@默然
笔记学习pytorch深度学习人工智能python
第二十八周:文献阅读笔记(弱监督学习)摘要Abstract1.弱监督学习1.1.文献摘要1.2.引言1.3.不完全监督1.3.1.主动学习与半监督学习1.3.2.通过人工干预1.3.3.无需人工干预1.4.不确切的监督1.5.不准确的监督1.6.弱监督学习的创新点2.pytorch学习2.1.对现有模型进行修改2.2.优化器的使用2.3.完整的模型训练套路总结摘要弱监督学习是一种机器学习方法,其训
- 第二十九周:文献阅读笔记(DenseNet)+ pytorch学习
@默然
笔记pytorch学习
第二十九周:文献阅读笔记(DenseNet)+pytorch学习摘要Abstract1、DenseNet文献阅读1.1文献摘要1.2文献引言1.3DenseNets网络1.3.1残差网络1.3.2密集连接1.3.3实施细节1.4实验1.4.1数据集1.4.1.1CIFAR1.4.1.2SVHN1.4.2模型训练1.4.3CIFAR和SVHN的分类结果1.4.4ImageNet上的分类结果1.5总结
- Pytorch学习记录-Pytorch可视化使用tensorboardX
我的昵称违规了
Pytorch学习记录-Pytorch可视化使用tensorboardX在很早很早以前(至少一个半月),我做过几节关于tensorboard的学习记录。https://www.jianshu.com/p/23205a7921cdhttps://www.jianshu.com/p/6235c1ecde67https://www.jianshu.com/p/2b24454b0629https://ww
- PyTorch学习---2.自动求梯度
与世无争小菜鸡
自动求梯度首先给大家介绍几个基本概念:方向导数:是一个数;反映的是f(x,y)在P0点沿方向v的变化率。偏导数:是多个数(每元有一个);是指多元函数沿坐标轴方向的方向导数,因此二元函数就有两个偏导数。偏导函数:是一个函数;是一个关于点的偏导数的函数。梯度:是一个向量;每个元素为函数对一元变量的偏导数;它既有大小(其大小为最大方向导数),也有方向。摘自《方向导数与梯度》梯度从本质上来说也是导数的一种
- pytorch学习路径
诗人藏夜里
微信公众号:诗人藏夜里参考了黄海广老师的[pytorch快速入门资料](https://zhuanlan.zhihu.com/p/87263048),并结合自身从0到1的学习经历,写下此pytorch入门路径本路径适合人群:深度学习初学者,深度学习框架初学者**欢迎拥抱最美DL框架**#1.[莫烦pytorch系列教程](https://morvanzhou.github.io/tutorials
- 小土堆pytorch学习笔记004
柠檬不萌只是酸i
深度学习pytorch学习笔记机器学习深度学习
目录1、神经网络的基本骨架-nn.Module的使用2、卷积操作实例3、神经网络-卷积层4、神经网络-最大池化的使用(1)最大池化画图理解:(2)代码实现:5、神经网络-非线性激活(1)代码实现(调用sigmoid函数)6、神经网络-线性层(1)代码7、网络搭建-小实战(1)完整代码1、神经网络的基本骨架-nn.Module的使用官网地址:pytorch里的nnimporttorchfromtor
- 小土堆pytorch学习笔记003 | 下载数据集dataset 及报错处理
柠檬不萌只是酸i
深度学习人工智能深度学习机器学习pytorchpython
目录1、下载数据集2、展示数据集里面的内容3、DataLoader的使用例子:结果展示:1、下载数据集#数据集importtorchvisiontrain_set=torchvision.datasets.CIFAR10(root="./test10_dataset",train=True,download=True)test_set=torchvision.datasets.CIFAR10(ro
- 小土堆pytorch学习笔记005 | 完结,✿✿ヽ(°▽°)ノ✿
柠檬不萌只是酸i
深度学习学习笔记pytorch机器学习深度学习
目录1、损失函数与反向传播2、如何在搭建的网络中使用损失函数呢?3、优化器4、现有网络模型的使用及修改例子:5、模型训练保存+读取(1)保存(2)读取6、完整的模型训练:(1)代码【model文件】:【主文件】:(2)运行截图:(3)绘图展示:(4)添加训练正确率的完整代码:(5)总结!!!:(6)使用GPU训练7、完整模型验证(1)代码(2)运行结果1、损失函数与反向传播①计算实际输出和目标之间
- 小土堆pytorch学习笔记002
柠檬不萌只是酸i
深度学习pytorch学习笔记
目录1、TensorBoard的使用(1)显示坐标:(2)显示图片:2、Transform的使用3、常见的Transforms(1)#ToTensor()(2)#Normalize()(3)#Resize()(4)#Compose()4、总结:1、TensorBoard的使用(1)显示坐标:fromtorch.utils.tensorboardimportSummaryWriterimportnu
- 【pytorch】pytorch学习笔记(续2)
小白冲鸭
pytorch学习笔记
p30:1.均方差(MeanSquaredError,MSE):(1)注意区分MSE和L2范数:L2范数要开根号,而MSE不需要开根号。用torch.norm函数求MSE的时候不要忘记加上pow(2)。求导:pytorch实现自动求导:第一种方法:torch.autograd.grad()设置w需要求导有两种方法:(1)在创建w之后,用来设置w需要求导。(2)在创建w的时候,用w=torch.te
- 【pytorch】pytorch学习笔记(续1)
小白冲鸭
pytorch学习笔记
p22:1.加减乘除:(1)add(a,b):等同于a+b。(2)sub(a,b):等同于a-b。(3)mul(a,b):等同于a*b。(4)div(a,b):等同于a/b。a//b表示整除。2.tensor的矩阵式相乘:matmul注意区分:(1)*:表示相同位置的元素相乘;(2).matmul:表示矩阵相乘。对于(2)矩阵的相乘,有三种方式:(1)torch.mm:只适用于二维的tensor,
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号