- Pointnet++改进即插即用系列:全网首发DilatedReparamBlock |即插即用,提升特征提取模块性能
AICurator
Pointnet++改进专栏python深度学习pytorch
简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,加入DilatedReparamBlock,提升性能。3.专栏持续更新,紧随最新的研究内容。目录1.理论介绍2.修改步骤2.1步骤一2.2步骤二2.3步骤三1.理论介绍近年来,大核卷积神经网络(ConvNets)得到了广泛的研究关注,但有两个尚未解决的关键问
- ubuntu安装 veloview_Pointnet+Frustum-Pointnet复现(Pytorch1.3+Ubuntu18.04)
信海松
ubuntu安装veloview
1.数据集和预处理1.1ModelNet40ModelNet40是一个大规模3DCAD数据集,始于3DShapeNets:ADeepRepresentationforVolumetricShapesZhirong,创建初衷是为了学习到能良好捕捉类内差别的3D表示,比当时最新的数据集大22倍。包含151,128个3DCAD模型和660个不同类别,如下图。作者在实验时仅选取了40个类别,每个类别各10
- Pointnet++改进注意力机制系列:全网首发DoubleAttention注意力机制 |即插即用,实现有效涨点
AICurator
Pointnet++改进专栏深度学习人工智能3d
简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,加入DoubleAttention注意力机制,提升性能。3.专栏持续更新,紧随最新的研究内容。目录1.理论介绍2.修改步骤2.1步骤一2.2步骤二2.3步骤三
- Pointnet++改进注意力机制系列:全网首发ShuffleAttention注意力机制 |即插即用,实现有效涨点
AICurator
Pointnet++改进专栏深度学习人工智能3d机器学习
简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,加入ShuffleAttention注意力机制,提升性能。3.专栏持续更新,紧随最新的研究内容。目录1.理论介绍2.修改步骤2.1步骤一2.2步骤二2.3步骤三
- Pointnet++改进优化器系列:全网首发AdamW优化器 |即插即用,实现有效涨点
AICurator
Pointnet++改进专栏深度学习人工智能3d机器学习神经网络
简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,加入AdamW优化器,提升性能。3.专栏持续更新,紧随最新的研究内容。目录1.理论介绍2.修改步骤2.1步骤一2.2步骤二2.3步
- Pointnet++改进优化器系列:全网首发Sophia优化器 |即插即用,实现有效涨点
AICurator
Pointnet++改进专栏深度学习人工智能3d机器学习
简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,加入Sophia优化器,提升性能。3.专栏持续更新,紧随最新的研究内容。目录1.理论介绍2.修改步骤2.1步骤一2.2步骤二2.3
- PointNet 和 PointNet++ pytorch版本 复现 modelnet40
Nice_cool.
三维点云pytorch深度学习人工智能
复现一下经典的PointNet的pytorch版本记录一下复现的过程代码下载gitclonehttps://gitcode.net/mirrors/yanx27/pointnet_pointnet2_pytorch.git环境配置python=3.8.13cuda=11.2cudnn=8.1.0pipinstalltorch==1.12.1+cu113torchvision==0.13.1+cu1
- PointNet-Pytorch代码运行(分类部分)
库噜熊
pytorch人工智能python
1、下载源码及环境的准备1.1源码下载PointNet源码下载地址:https://github.com/fxia22/pointnet.pytorch分类数据集为modelnet40数据集下载官网(我从官网下载失败了,然后去其他地方下载的)PrincetonModelNethttp://modelnet.cs.princeton.edu/1.2环境准备安装Pointnet包cdpointnet.
- 【唐宇迪 深度学习-3D点云实战系列】学习笔记
_helen_520
点云算法学习
课程目录如下:https://download.csdn.net/learn/35500/529919一、3D点云应用领域分析3D点云领域都关注了哪些方向?课程核心系列-PointNet系列:点云数据如何处理、点云数据如何进行特征提取。后续无论是分类、分割、补全、配准检测,首先都要先对点云数据进行特征提取。PointNet系列就是重点系列。算法原理、论文思想、源码实现基础算法、论文核心思想。点云数
- 复现PointNet++(语义分割网络):Windows + PyTorch + S3DIS语义分割 + 代码
累了就要打游戏
pytorch人工智能python点云语义分割PointNet
一、平台Windows10GPURTX3090+CUDA11.1+cudnn8.9.6Python3.9Torch1.9.1+cu111所用的原始代码:https://github.com/yanx27/Pointnet_Pointnet2_pytorch二、数据Stanford3dDataset_v1.2_Aligned_Version三、代码分享给有需要的人,代码质量勿喷。对源代码进行了简化和
- Hand PointNet: 3D Hand Pose Estimation using Point Sets总结
中了胖毒
文章链接摘要基于PointNet++,直接处理3D点云数据预测输出3D手势关键PointNet++接受深度图作为输入,转换为点云,并下采样为N个点。每个点取坐标值和曲面法线向量作为初始特征输入,,使用PointNet++提取特征OrientedBoundingBox(OBB)归一化视角OBB是一个紧贴输入点云的边界框,OBB的方向由点云的PCA主成分分析得到(根据特征值降序排序)为p在摄像机坐标系
- 点云相关论文总结
计算机视觉-Archer
人工智能
点云Backbone全链接-PointNet++:https://arxiv.org/pdf/1706.02413.pdfTransformer-PointTransformer:https://openaccess.thecvf.com/content/ICCV2021/papers/Zhao_Point_Transformer_ICCV_2021_paper.pdf3DCNN-https://
- Windows系统保姆级复现Pointnet++算法教程笔记(基于Pytorch)
爱编码的小陈
点云笔记pytorch人工智能
前言今天复现了PointNet++网络,中途也遇到过好多报错问题,但都一一解决了,最终实现cls、partseg、semseg训练(train)和测试(test)程序的成功跑通。首先,我参考的论文和所用的源码参考自这篇文章:3D点云目标检测算法Pointnet++项目实战Pytorch实现附代码:链接:https://pan.baidu.com/s/10Nk4Zd3S_NklY5PJwzmnWA提
- Pointnet++改进:在特征提取模块加入GAM注意力机制
AICurator
Pointnet++改进专栏深度学习人工智能3d
简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,加入GAM注意力机制,提升性能。3.专栏持续更新,紧随最新的研究内容。目录1.理论介绍2.修改步骤2.1步骤一2.2步骤二2.3步
- Pointnet++改进:在特征提取模块加入EMA注意力机制
AICurator
Pointnet++改进专栏深度学习人工智能3d
简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,加入EMA注意力机制,提升性能。3.专栏持续更新,紧随最新的研究内容。目录1.理论介绍2.修改步骤2.1步骤一2.2步骤二2.3步骤三
- Pointnet++改进:在特征提取模块加入SegNext_Attention注意力机制,卷积注意力打造高性能点云分割模型
AICurator
Pointnet++改进专栏深度学习人工智能3dpython机器学习
简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,加入SegNext_Attention注意力机制,提升性能,实现有效涨点。3.专栏持续更新,紧随最新的研究内容。目录1.理论介绍2.修改步骤2.1步骤一2.2步骤二
- Pointnet++改进注意力机制系列:全网首发CoordAtt注意力机制 |即插即用,实现有效涨点
AICurator
Pointnet++改进专栏深度学习人工智能3dpython神经网络
简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,加入CoordAtt注意力机制,提升性能。3.专栏持续更新,紧随最新的研究内容。目录1.理论介绍2.修改步骤2.1步骤一2.2步骤二
- Pointnet++改进:在特征提取模块加入NAMAttention注意力机制,有效涨点
AICurator
Pointnet++改进专栏深度学习人工智能机器学习3d
简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,加入NAMAttention注意力机制,提升性能。3.专栏持续更新,紧随最新的研究内容。目录1.理论介绍2.修改步骤2.1步骤一
- Pointnet++改进:在特征提取模块加入CBAM注意力机制
AICurator
Pointnet++改进专栏深度学习人工智能3dpython
简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,提升性能。3.专栏持续更新,紧随最新的研究内容。目录1.步骤一2.步骤二3.步骤三论文介绍:摘要。我们提出了卷积块注意模块(CBAM),这是一种简单而有效的前馈卷积神经网络注意模块。给定一个中间特征映射,我们的模块沿着两个独立的维度依次推断注意力映射,通道和
- Pointnet++改进:更换不同的激活函数,打造更优性能
AICurator
Pointnet++改进专栏人工智能python深度学习3d
简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++进行激活函数的改进,助力解决RELU激活函数缺陷。3.专栏持续更新,紧随最新的研究内容。文章目录步骤一步骤二步骤三代码地址步骤一新建activate.py文件,我存放在新建的block目录下,加入以下代码:#Activationfunctionsimporttorchimport
- Pointnet++环境配置(Windows11和ubuntu)及训练教程
AICurator
Pointnet++改进专栏ubuntulinux运维机器学习人工智能3d
本文使用的是Pytorch版本的Pointnet++代码,主要包含完整的环境配置及训练过程,包括在训练时遇到的坑。目录1.Windows11环境配置2.Ubuntu环境配置3.训练教程3.1分类(Classification)训练3.2零件分割(PartSegmentation)训练3.3场景分割(SemanticSegmentation)训练代码地址1.Windows11环境配置这里主要是pyt
- pointNet训练预测自己的数据集Charles版本(一)
竹叶青lvye
检测分割分类深度学习人工智能pointnetCharles3D点云分割
这里跑下作者在github提供的pointNet源码,也会训练和预测下自己的数据集。实际动手看下效果。论文链接:https://openaccess.thecvf.com/content_cvpr_2017/papers/Qi_PointNet_Deep_Learning_CVPR_2017_paper.pdfhttps://openaccess.thecvf.com/content_cvpr_2
- pointNet训练预测自己的数据集Charles版本(二)
竹叶青lvye
检测分割分类深度学习pointNettensorflowpython点云语义分割
之前博客介绍了如何跑通charles版本的pointNet,这篇介绍下如何来训练和预测自己的数据集,介绍如何在自己的数据集上做点云语义分割,此篇的环境配置和博客中保持一致。点云分类较简单,方法差不多,这边就不特地说明了。一.在自己的点云数据集上做语义分割1.RGB-DScenesDatasetv.2数据集介绍博主拿数据集RGB-DScenesDatasetv.2来做实验,数据集下载链接如下:RGB
- RandLA-Net windows Pytorch实现
Noxxhh
点云深度学习pytorchpython深度学习windows
前言最近准备学习有关点云的深度学习模型,想先在自己笔记本电脑(windows11系统)上先简单复现下相关模型和解读代码,由于网上也有很多关于windows系统下的模型复现的博客,所以我就在windows系统下展开了学习。目前只是跑通PointNet和RandLA-Net两个比较基础的模型,但在复现过程中仍遇到很多问题,可能和windows系统本身有关系,所以建议还是提前安装Linux系统,不然可能
- Point-BERT:一种基于Transformer架构的点云深度网络
程序猿老甘
bert学习人工智能
目录1.前言2.PointTokenization3.TransformerBackbone4.MaskedPointModeling5.ExperimentsReference1.前言从PointNet[1]开始,点云深度网络逐渐成为解决点云特征提取与语义分析的主要研究方向。尤其在OpenAI的GPT模型获得了突破性成果后,一系列的点云深度学习研究开始向相同的技术方向靠拢,即基于Transfor
- PointNet:基于Python和PyTorch的3D分割的实用指南
小北的北
pythonpytorch开发语言人工智能深度学习
准备好探索3D分割的世界吧,我们将通过PointNet进行一次旅程,这是一种理解3D形状的超酷方法。PointNet就像计算机查看3D事物的智能工具,尤其是在空间中漂浮的点群。它与其他方法不同,因为它直接处理这些点,而不需要将它们强制放入网格或图片中。在本文中,我们将使PointNet易于理解。我们将从大的想法开始,实际上编写Python和PyTorch的代码来进行3D分割。但在我们进入有趣的部分
- 可以应用于点云的深度学习方法
稻壳特筑
激光SLAMSLAMcomputervisionSLAM计算机视觉
点云处理中应用深度学习方法正变得越来越流行,特别是在任务如分类、分割、检测和重建等领域。下面列出了一些在点云处理中常用的深度学习方法:PointNet和PointNet++:PointNet是首个直接在点云上工作的深度学习模型。它能够从整个点集中直接学习点云的全局特征。PointNet++则在此基础上进行了改进,增加了局部结构的考虑,通过逐点采样和分组来捕捉更细粒度的特征。Voxel-basedN
- 多传感器融合SLAM论文调研
dueen1123
自动驾驶
感知任务物体识别:《Pointnet:Deeplearningonpointsetsfor3dclassificationandsegmentation》《Voxelnet:End-to-endlearningforpointcloudbased3dobjectdetection》语义分割:《Anintegratedframeworkforautonomousdriving:objectdetec
- 【学习笔记】:PointNet的补充材料
喝鸡汤
计算机视觉人工智能
1.比较PointNet与VoxNet的网络:使用两个网络处理缺失点云数据,测试鲁棒性,划分相同的数据集,以1024个点作为输入。对于VoxNet,将点云数据划为323232的网格,并使用随即旋转与抖动增强数据集。由于VoxNet对旋转敏感,使用十二个视点的平均分数,结果如下:本文提出的网络对于数据缺失具有较强的鲁棒性。2.网络框架和训练细节:a.点云分类网络:mini-PointNet(输入变换
- 激光感知(十):深度学习算法发展简史
JayLee719
从零开始入门自动驾驶感知算法算法自动驾驶深度学习
目录前言一、Point-based1.PointNet/PointNet++2.F-PointNet3.PointRCNN总结二、Voxel-based1.VoxelNetVoxelNet特征提取流程1)Voxel特征提取2)全局特征提取2.SECOND稀疏卷积3.后续总结前言在深度学习方法出现之前,基于点云的目标检测已经有一套比较成熟的处理流程:分割地面->点云聚类->特征提取->分类,我们将这
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla