- GPT 系列模型发展史:从 GPT 到 ChatGPT 的演进与技术细节
Ash Butterfield
nlpgptchatgpt
从GPT到ChatGPT,OpenAI用短短几年时间,彻底改变了自然语言处理(NLP)的格局。让我们一起回顾这段激动人心的技术演进史!GPT(2018):划时代的起点:GPT(GenerativePre-trainedTransformer)首次将Transformer架构与无监督预训练结合,开启了大规模语言模型的新时代。核心突破:通过海量文本预训练+任务微调,GPT展示了强大的泛化能力。GPT-
- YOLO各版本原理和优缺点解析
Ash Butterfield
计算机视觉
YOLO(YouOnlyLookOnce)是一种实时目标检测算法,以其高速度和较高精度著称。以下是各版本的详细介绍及优缺点分析:1.YOLOv1(2016年)原理:将输入图像划分为S×SS\timesSS×S的网格,每个网格预测多个边界框和类别置信度。使用单个神经网络直接对图像进行前向传播预测边界框和类别标签。优点:速度快,适合实时应用。模型结构简单,易于实现和训练。缺点:对小目标检测效果差,容易
- 【AI论文】OmniHuman-1: 重新思考一阶段条件式人体动画模型的扩展升级
东临碣石82
人工智能
摘要:端到端的人体动画技术,如音频驱动的说话人物生成,近年来取得了显著的进步。然而,现有方法在大规模通用视频生成模型方面的扩展仍然存在困难,限制了它们在实际应用中的潜力。在本文中,我们提出了OmniHuman,一个基于扩散变换器的框架,该框架通过将运动相关条件融入训练阶段来扩展数据规模。为此,我们为这些混合条件引入了两种训练原则,以及相应的模型架构和推理策略。这些设计使OmniHuman能够充分利
- 【AI系列】从零开始学习大模型GPT (2)- Build a Large Language Model (From Scratch)
Tasfa
AI人工智能教程人工智能学习gpt
前序文章【AI系列】从零开始学习大模型GPT(1)-BuildaLargeLanguageModel(FromScratch)BuildaLargeLanguageModel背景第1章:理解大型语言模型第2章:处理文本数据第3章:编码Attention机制什么是Attention机制?Attention机制的基本原理数学表示应用总结为什么要使用注意力机制如何实现?简单注意力机制带训练权重的注意力机
- 自学人工智能大模型,满足7B模型的训练和微调以及推理,预算3万,如何选购电脑
岁月的眸
人工智能
如果你的预算是3万元人民币,希望训练和微调7B参数规模的人工智能大模型(如LLaMA、Mistral等),你需要一台高性能的深度学习工作站。在这个预算范围内,以下是推荐的配置:1.关键硬件配置(1)GPU(显卡)推荐显卡:NVIDIARTX4090(24GBVRAM)或者RTX3090(24GBVRAM)理由:7B模型推理:24GB显存足够跑7B模型的推理,但全参数训练可能吃力,适合LoRA等微调
- 技术革新让生活更便捷
巴巴郭海鹄
生活量子计算经验分享
量子通信是一种利用量子力学原理进行信息传递的技术。它的基本原理是量子纠缠和量子密钥分发。量子纠缠指两个粒子即使相隔很远,一个粒子的状态改变会立刻引起另一个粒子状态的相应变化。量子密钥分发则是通过量子态传输实现加密密钥的安全交换。在信息安全领域,量子通信具有显著优势。传统加密方法依赖于复杂的数学问题,但未来可能被量子计算机解密。而量子通信利用量子力学的不确定性,提供了一种理论上无法被窃听的安全通信方
- 多模态大模型(LMMs)与大语言模型(LLMs)的比较
大F的智能小课
底层技术解析人工智能语言模型
前言现在的大模型分为两大类:大语言模型(LargeLanguageModels,简称LLMs)和多模态大模型(LargeMultimodalModels,简称LMMs)。本文将从基础定义、输入数据、应用场景、训练过程这几方面讨论下两者的区别。基础定义LLMs(LargeLanguageModels,大型语言模型)-深度学习的应用之一,是基于深度学习的大规模机器学习模型,通常由数十亿到数万亿个参数构
- DeepSeek与ChatGPT正在改写学历规则?2025教育革命深度解析
笑傲江湖2023
人工智能chatgpt
一、颠覆性现状:AI如何解构学历价值1.知识获取民主化随着AI技术的不断进步,知识获取的方式正在发生翻天覆地的变化:DeepSeek-R1通过仅10%的训练成本,实现了与GPT-4o相当的性能,技术文档的生成效率提升了70%。这种高效的知识生成方式,使得人人都可以轻松获取和应用知识。斯坦福大学的研究显示,使用ChatGPT的大学生平均GPA提升了0.43分,但课程通过率却下降了11%(2024)。
- 【必看】凭啥?DeepSeek如何用1/179的训练成本干到GPT-4o 98%性能
大F的智能小课
人工智能算法
一、DeepSeek降低训练成本的核心方法1.1创新训练方法DeepSeek通过独特的训练方案显著降低了训练成本。其核心策略包括减少监督微调(SFT)步骤,仅依赖强化学习(RL)技术。DeepSeek-R1-Zero版本完全跳过SFT,仅通过RL进行训练。尽管初期计算开销较大,但添加少量冷启动数据后,训练稳定性和模型推理能力大幅提升。此外,DeepSeek还采用了组相对策略优化(GRPO)算法替代
- Unity Shader 常用函数列表
opti
查询unityshader
UnityShader常用函数列表数学函数(MathematicalFunctions)函数功能abs(x)返回输入参数的绝对值acos(x)反余切函数,输入参数范围为[-1,1],返回[0,π]区间的角度值all(x)如果输入参数均不为0,则返回ture;否则返回flase。&&运算any(x)输入参数只要有其中一个不为0,则返回true。asin(x)反正弦函数,输入参数取值区间为[−1,1]
- DeepSeek R1:开启AI推理新时代,强在哪里?
人工智能
DeepSeekR1:开启AI推理新时代阅读时长:19分钟发布时间:2025-02-13近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】你是否曾好奇,AI模型是如何学会拆解数学问题,或是一步步解释代码的呢?在过去几年,许多公司开发出了大型语言模型(LLM),它们能创作文章、翻译语言、编写
- 数据库三级模式
iamphp
系统架构设计师数据库系统架构
站在数据库管理系统的角度看,数据库系统一般采用三级模式结构,其体系结构如图所示。事实上,一个可用的数据库系统必须能够高效地检索数据。这种高效性的需求促使数据库设计者使用复杂的数据结构来表示数据。由于大多数数据库系统用户并未受过计算机的专业训练,因此系统开发人员需要通过视图层、逻辑层和物理层三个层次上的抽象来对用户屏蔽系统的复杂性,简化用户与系统的交互。(1)视图层(ViewLevel)是最高层次的
- 书籍-《强化学习数学基础》
强化学习数学人工智能
书籍:MathematicalFoundationsofReinforcementLearning作者:赵世钰出版:Springer编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《强化学习数学基础》01书籍介绍本书对基本概念、核心挑战和经典强化学习算法进行了数学但易于理解的介绍。它旨在帮助读者理解算法的理论基础,提供对其设计和功能的见解。整个过程中包括许多说明性示例。数学内容经过精心设计,以
- DeepSeek使用手册,其中一份是清华大学出品
cpa007
云计算
自娶,。https://pan.quark.cn/s/d174471b17c0深入了解DeepSeek:从技术到应用一、DeepSeek是什么?DeepSeek(深度求索)是一款由杭州深度求索人工智能基础技术研究有限公司开发的人工智能平台,专注于提供高效易用的AI模型训练与推理能力。它既包含预训练大语言模型(如DeepSeek-R1系列),也提供配套工具链,助力开发者快速实现AI应用落地。二、De
- conda 装tensorboardx_【工欲善其事】TensorboardX的使用
weixin_39719042
conda装tensorboardx
“我不喜欢Tensorflow,但这并不妨碍我使用tensorboard”上一篇文章(https://zhuanlan.zhihu.com/p/39849027),和大家简单地聊了一下关于如何在训练过程中有序地组织log问题。今天,想和大家简单地谈谈tensorboard的使用。经过社区的努力,目前PyTorch也可以使用tensorboard了。在训练过程中实时地观察loss/accuracy曲
- 拉格朗日乘数法算法详解及python实现
闲人编程
python算法python开发语言拉格朗日乘数法数学模型
目录一、拉格朗日乘数法算法详解1.1基本思想1.2数学推导1.3算法步骤1.4算法在编程中的实现二、案例分析案例一:二维最优化问题——求f(x,y)=x2+y2f(x,y)=x^2+y^2f(x,y)=x2+y2在约束x+y=1x+y=1x+y=1下的极值2.1.1问题描述2.1.2数学模型构建2.1.3Python代码实现案例二:乘积最大化问题——求f(x,y)=xyf(x,y)=xyf(x,y
- 【C语言】选择排序、冒泡排序、二分查找、插入排序的详解
Hello_O.
c语言开发语言
1、排序:(在c语言中很重要)排序,字面意思就是按照一定的顺序排列,一般分为两种:1、从小到大;(升序)2、从大到小;(降序)c语言中主要介绍四个排序:1、选择排序;2、冒泡排序;3、插入排序;4、快速排序;1、选择排序:(先统一写升序排列)1、依靠算法,算法主要是数学逻辑;所以我们要了解算法思想,掌握c语言如何实现、选择和应用;2、选择排序基本思想:给合适位置选择合适的数;思考过程:首先先假设一
- 具身智能训练新思路!将生成视频用于训练机器人
天机️灵韵
具身智能人工智能具身智能
将生成视频用于训练具身智能(EmbodiedAI)确实是近年来备受关注的前沿方向,这一思路通过结合生成式AI(如扩散模型、神经辐射场等)与机器人学习,为解决真实世界数据稀缺、训练成本高等问题提供了新可能。以下从技术逻辑、潜在优势、挑战及案例方向展开分析:一、技术逻辑:如何用生成视频训练机器人?生成式AI构建虚拟环境利用扩散模型(如Sora、StableVideoDiffusion)或3D生成技术(
- 从零开始大模型开发与微调:Miniconda的下载与安装
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:Miniconda的下载与安装1.背景介绍随着人工智能和机器学习技术的快速发展,大型语言模型(LargeLanguageModel,LLM)已经成为当前研究和应用的热点。这些模型通过在海量文本数据上进行预训练,能够捕捉到丰富的语义和上下文信息,从而在自然语言处理任务中表现出色。然而,训练这些庞大的模型需要大量的计算资源,对于普通开发者来说,从头开始训练一个大模型是一个巨大
- 如何避免交叉验证中的数据泄露?
奋进小青
人工智能深度学习机器学习
大家好,我是小青在机器学习中,交叉验证(Cross-Validation)是一种常用的模型评估技术,目的是通过将数据集分割为多个子集,反复训练和验证模型,以便更好地估计模型的性能。然而,在交叉验证过程中,数据泄露(DataLeakage)是一个非常严重的问题,它会导致模型的评估结果过于乐观,进而使得模型在实际应用中表现不佳。什么是数据泄露数据泄露是指在模型训练过程中,模型不恰当地接触到了与验证集或
- 青少年编程与数学 02-009 Django 5 Web 编程 08课题、数据库操作
明月看潮生
编程与数学第02阶段青少年编程django数据库python编程与数学
青少年编程与数学02-009Django5Web编程08课题、数据库操作一、数据操作1.创建记录2.查询记录3.更新记录4.删除记录5.聚合与注解二、创建记录1.定义模型2.迁移模型到数据库3.使用模型创建记录方法一:实例化模型并调用`save()`方法二:使用`create()`方法方法三:使用`bulk_create()`批量创建注意事项三、查询记录基本查询方法获取所有记录过滤记录获取单个记录
- 微软 LayoutLMv3:通过统一文本和图像掩码进行文档人工智能预训练
人工智能
LayoutLMv3:通过统一文本和图像掩码进行文档人工智能预训练LayoutLMv3应用统一的文本-图像多模态Transformer来学习跨模态表示。Transformer具有多层架构,每层主要由多头自注意力机制和逐位置全连接前馈网络组成。Transformer的输入是文本嵌入$Y=y_{1:L}$和图像嵌入$X=x_{1:M}$序列的连接,其中$L$和$M$分别是文本和图像的序列长度。通过Tr
- 如何训练LLMs进行“思考”(如o1和DeepSeek-R1)
人工智能
如何训练LLMs进行“思考”(如o1和DeepSeek-R1)阅读时长:19分钟发布时间:2025-02-13近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】一台会思考的笔记本电脑OpenAI的o1模型为大型语言模型(LLM)的训练开创了全新范式。它引入了所谓的“思考”令牌(tokens
- 【深度学习】常见模型-GPT(Generative Pre-trained Transformer,生成式预训练 Transformer)
IT古董
深度学习人工智能深度学习gpttransformer
GPT(GenerativePre-trainedTransformer)1️⃣什么是GPT?GPT(GenerativePre-trainedTransformer,生成式预训练Transformer)是由OpenAI开发的基于Transformer解码器(Decoder)的自回归(Autoregressive)语言模型。它能够通过大量无监督数据预训练,然后微调(Fine-tuning)以适应特
- 高等代数笔记5:线性变换
p_wh
高等代数
线性映射的定义与性质线性映射的定义数学研究的主题是空间与变换,对于代数学而言,空间指的是赋予了某种运算结构的集合,变换则是空间到空间的映射。线性代数则是研究线性空间及其上的映射。但是,研究的对象不是所有的映射,而是特殊的一类映射,这类映射和线性运算紧密联系,称为线性映射。定义5.1V1,V2V_1,V_2V1,V2是KKK的两个线性空间,f:V1→V2f:V_1\toV_2f:V1→V2是V1V_
- python同花顺交易接口_开启量化第一步!同花顺iFinD数据接口免费版简易操作教程...
weixin_39564527
python同花顺交易接口
金融市场波动频繁,投资往往会夹杂非理性的情绪。而量化交易,旨在以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,辅助投资者进行理性投资。不过计算机分析存在一定的技术门槛,有没有简单易学的量化交易方式,能够快速获取有价值的投资策略方案呢?同花顺iFinD数据接口免费版提供简易的操作与丰富的实操案例,将作为引路者,带你迈入量化世界!P
- 微软 LayoutLMv3:通过统一文本和图像掩码进行文档人工智能预训练
人工智能
LayoutLMv3:通过统一文本和图像掩码进行文档人工智能预训练LayoutLMv3应用统一的文本-图像多模态Transformer来学习跨模态表示。Transformer具有多层架构,每层主要由多头自注意力机制和逐位置全连接前馈网络组成。Transformer的输入是文本嵌入$Y=y_{1:L}$和图像嵌入$X=x_{1:M}$序列的连接,其中$L$和$M$分别是文本和图像的序列长度。通过Tr
- 从零开始构建一个大语言模型-第七章第一节
释迦呼呼
从零开始构建一个大语言模型语言模型人工智能自然语言处理机器学习transformer
第七章目录7.1指令微调简介7.2为有监督的指令微调准备数据集7.3将数据整理成训练批次7.4为指令数据集创建数据加载器7.5加载预训练的大语言模型7.6在指令数据上对大语言模型进行微调7.7提取并保存回复7.8评估微调后的大语言模型7.9结论本章内容涵盖大语言模型的指令微调过程准备用于有监督指令微调的数据集将指令数据整理成训练批次提取大语言模型生成的指令响应以供评估此前,我们实现了大语言模型(L
- AI 终极十问!DeepSeek 如何颠覆开发者认知? | DeepSeek 十日谈
AI科技大本营
人工智能
如今的大模型和人类越来越像,初步掌握了“自我思考”的能力后,进而给出更为合理的解答。这类模型便被称之为推理模型,当下热议的DeepSeekR1以及之前OpenAI发布的o1都是典型的代表。以一个简单的数学问题为例,“如果一列火车以60英里每小时的速度行驶,行驶3小时后,它会走多远?”DeepSeekR1和通用多模态大模型GPT-4o或都能给出正确答案:但DeepSeekR1的不同之处在于它能够拆解
- DataWhale 数学建模导论学习笔记(第一章)
ryanYu_127
学习笔记
要点:利用Python作为计算工具帮助解决数学模型。一、前期准备工作1.AnacondaNavigator帮助安装了NumPy所需的功能包。2.通过Jupyter_Lab,可以直接测试代码运行的结果。3.通过vscode可以修改文本并即时看到预览结果,解决一些符号、公式、表格显示不正常的问题。4.这也是我第一次使用CSDN记录自己的学习笔记。二、进入第一章正题解析方法与几何建模:1.前面的向量和矩
- 矩阵求逆(JAVA)初等行变换
qiuwanchi
矩阵求逆(JAVA)
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(初等行变换)
* @author 邱万迟
*
- JDK timer
antlove
javajdkschedulecodetimer
1.java.util.Timer.schedule(TimerTask task, long delay):多长时间(毫秒)后执行任务
2.java.util.Timer.schedule(TimerTask task, Date time):设定某个时间执行任务
3.java.util.Timer.schedule(TimerTask task, long delay,longperiod
- JVM调优总结 -Xms -Xmx -Xmn -Xss
coder_xpf
jvm应用服务器
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
java -Xmx
- JDBC连接数据库
Array_06
jdbc
package Util;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class JDBCUtil {
//完
- Unsupported major.minor version 51.0(jdk版本错误)
oloz
java
java.lang.UnsupportedClassVersionError: cn/support/cache/CacheType : Unsupported major.minor version 51.0 (unable to load class cn.support.cache.CacheType)
at org.apache.catalina.loader.WebappClassL
- 用多个线程处理1个List集合
362217990
多线程threadlist集合
昨天发了一个提问,启动5个线程将一个List中的内容,然后将5个线程的内容拼接起来,由于时间比较急迫,自己就写了一个Demo,希望对菜鸟有参考意义。。
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;
public c
- JSP简单访问数据库
香水浓
sqlmysqljsp
学习使用javaBean,代码很烂,仅为留个脚印
public class DBHelper {
private String driverName;
private String url;
private String user;
private String password;
private Connection connection;
privat
- Flex4中使用组件添加柱状图、饼状图等图表
AdyZhang
Flex
1.添加一个最简单的柱状图
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
<?xml version=
"1.0"&n
- Android 5.0 - ProgressBar 进度条无法展示到按钮的前面
aijuans
android
在低于SDK < 21 的版本中,ProgressBar 可以展示到按钮前面,并且为之在按钮的中间,但是切换到android 5.0后进度条ProgressBar 展示顺序变化了,按钮再前面,ProgressBar 在后面了我的xml配置文件如下:
[html]
view plain
copy
<RelativeLa
- 查询汇总的sql
baalwolf
sql
select list.listname, list.createtime,listcount from dream_list as list , (select listid,count(listid) as listcount from dream_list_user group by listid order by count(
- Linux du命令和df命令区别
BigBird2012
linux
1,两者区别
du,disk usage,是通过搜索文件来计算每个文件的大小然后累加,du能看到的文件只是一些当前存在的,没有被删除的。他计算的大小就是当前他认为存在的所有文件大小的累加和。
- AngularJS中的$apply,用还是不用?
bijian1013
JavaScriptAngularJS$apply
在AngularJS开发中,何时应该调用$scope.$apply(),何时不应该调用。下面我们透彻地解释这个问题。
但是首先,让我们把$apply转换成一种简化的形式。
scope.$apply就像一个懒惰的工人。它需要按照命
- [Zookeeper学习笔记十]Zookeeper源代码分析之ClientCnxn数据序列化和反序列化
bit1129
zookeeper
ClientCnxn是Zookeeper客户端和Zookeeper服务器端进行通信和事件通知处理的主要类,它内部包含两个类,1. SendThread 2. EventThread, SendThread负责客户端和服务器端的数据通信,也包括事件信息的传输,EventThread主要在客户端回调注册的Watchers进行通知处理
ClientCnxn构造方法
&
- 【Java命令一】jmap
bit1129
Java命令
jmap命令的用法:
[hadoop@hadoop sbin]$ jmap
Usage:
jmap [option] <pid>
(to connect to running process)
jmap [option] <executable <core>
(to connect to a
- Apache 服务器安全防护及实战
ronin47
此文转自IBM.
Apache 服务简介
Web 服务器也称为 WWW 服务器或 HTTP 服务器 (HTTP Server),它是 Internet 上最常见也是使用最频繁的服务器之一,Web 服务器能够为用户提供网页浏览、论坛访问等等服务。
由于用户在通过 Web 浏览器访问信息资源的过程中,无须再关心一些技术性的细节,而且界面非常友好,因而 Web 在 Internet 上一推出就得到
- unity 3d实例化位置出现布置?
brotherlamp
unity教程unityunity资料unity视频unity自学
问:unity 3d实例化位置出现布置?
答:实例化的同时就可以指定被实例化的物体的位置,即 position
Instantiate (original : Object, position : Vector3, rotation : Quaternion) : Object
这样你不需要再用Transform.Position了,
如果你省略了第二个参数(
- 《重构,改善现有代码的设计》第八章 Duplicate Observed Data
bylijinnan
java重构
import java.awt.Color;
import java.awt.Container;
import java.awt.FlowLayout;
import java.awt.Label;
import java.awt.TextField;
import java.awt.event.FocusAdapter;
import java.awt.event.FocusE
- struts2更改struts.xml配置目录
chiangfai
struts.xml
struts2默认是读取classes目录下的配置文件,要更改配置文件目录,比如放在WEB-INF下,路径应该写成../struts.xml(非/WEB-INF/struts.xml)
web.xml文件修改如下:
<filter>
<filter-name>struts2</filter-name>
<filter-class&g
- redis做缓存时的一点优化
chenchao051
redishadooppipeline
最近集群上有个job,其中需要短时间内频繁访问缓存,大概7亿多次。我这边的缓存是使用redis来做的,问题就来了。
首先,redis中存的是普通kv,没有考虑使用hash等解结构,那么以为着这个job需要访问7亿多次redis,导致效率低,且出现很多redi
- mysql导出数据不输出标题行
daizj
mysql数据导出去掉第一行去掉标题
当想使用数据库中的某些数据,想将其导入到文件中,而想去掉第一行的标题是可以加上-N参数
如通过下面命令导出数据:
mysql -uuserName -ppasswd -hhost -Pport -Ddatabase -e " select * from tableName" > exportResult.txt
结果为:
studentid
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
先下载PHPEXCEL类文件,放在class目录下面,然后新建一个index.php文件,内容如下
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('
- 爱情格言
dcj3sjt126com
格言
1) I love you not because of who you are, but because of who I am when I am with you. 我爱你,不是因为你是一个怎样的人,而是因为我喜欢与你在一起时的感觉。 2) No man or woman is worth your tears, and the one who is, won‘t
- 转 Activity 详解——Activity文档翻译
e200702084
androidUIsqlite配置管理网络应用
activity 展现在用户面前的经常是全屏窗口,你也可以将 activity 作为浮动窗口来使用(使用设置了 windowIsFloating 的主题),或者嵌入到其他的 activity (使用 ActivityGroup )中。 当用户离开 activity 时你可以在 onPause() 进行相应的操作 。更重要的是,用户做的任何改变都应该在该点上提交 ( 经常提交到 ContentPro
- win7安装MongoDB服务
geeksun
mongodb
1. 下载MongoDB的windows版本:mongodb-win32-x86_64-2008plus-ssl-3.0.4.zip,Linux版本也在这里下载,下载地址: http://www.mongodb.org/downloads
2. 解压MongoDB在D:\server\mongodb, 在D:\server\mongodb下创建d
- Javascript魔法方法:__defineGetter__,__defineSetter__
hongtoushizi
js
转载自: http://www.blackglory.me/javascript-magic-method-definegetter-definesetter/
在javascript的类中,可以用defineGetter和defineSetter_控制成员变量的Get和Set行为
例如,在一个图书类中,我们自动为Book加上书名符号:
function Book(name){
- 错误的日期格式可能导致走nginx proxy cache时不能进行304响应
jinnianshilongnian
cache
昨天在整合某些系统的nginx配置时,出现了当使用nginx cache时无法返回304响应的情况,出问题的响应头: Content-Type:text/html; charset=gb2312 Date:Mon, 05 Jan 2015 01:58:05 GMT Expires:Mon , 05 Jan 15 02:03:00 GMT Last-Modified:Mon, 05
- 数据源架构模式之行数据入口
home198979
PHP架构行数据入口
注:看不懂的请勿踩,此文章非针对java,java爱好者可直接略过。
一、概念
行数据入口(Row Data Gateway):充当数据源中单条记录入口的对象,每行一个实例。
二、简单实现行数据入口
为了方便理解,还是先简单实现:
<?php
/**
* 行数据入口类
*/
class OrderGateway {
/*定义元数
- Linux各个目录的作用及内容
pda158
linux脚本
1)根目录“/” 根目录位于目录结构的最顶层,用斜线(/)表示,类似于
Windows
操作系统的“C:\“,包含Fedora操作系统中所有的目录和文件。 2)/bin /bin 目录又称为二进制目录,包含了那些供系统管理员和普通用户使用的重要
linux命令的二进制映像。该目录存放的内容包括各种可执行文件,还有某些可执行文件的符号连接。常用的命令有:cp、d
- ubuntu12.04上编译openjdk7
ol_beta
HotSpotjvmjdkOpenJDK
获取源码
从openjdk代码仓库获取(比较慢)
安装mercurial Mercurial是一个版本管理工具。 sudo apt-get install mercurial
将以下内容添加到$HOME/.hgrc文件中,如果没有则自己创建一个: [extensions] forest=/home/lichengwu/hgforest-crew/forest.py fe
- 将数据库字段转换成设计文档所需的字段
vipbooks
设计模式工作正则表达式
哈哈,出差这么久终于回来了,回家的感觉真好!
PowerDesigner的物理数据库一出来,设计文档中要改的字段就多得不计其数,如果要把PowerDesigner中的字段一个个Copy到设计文档中,那将会是一件非常痛苦的事情。