- 算法学习笔记之数学基础
threesevens
算法与数据结构算法
例1(最小公倍数与最大公约数)计算最小公倍数公式:LCM(A,B)=A*B/GCD(A,B)A与B的最小公倍数等于A*B除以A与B的最大公约数计算最大公约数:辗转相除法原理:设A与B的最大公约数为x,则A是x的倍数,B也是x的倍数,令A=ax,B=bx,A/B取整为c,则A-cB=(a-bc)x。即A与B的余数也是x的倍数 intgcd(inta,intb) { inttemp; whil
- 学习AI大模型用这十种方法,轻松入门
大模型玩家
学习人工智能transformer深度学习langchainagi大模型
AI大模型学习在当前技术环境下,AI大模型学习不仅要求研究者具备深厚的数学基础和编程能力,还需要对特定领域的业务场景有深入的了解。通过不断优化模型结构和算法,AI大模型学习能够不断提升模型的准确性和效率,为人类生活和工作带来更多便利。系统化理论知识建构:对于AI大模型的学习,首要任务是对基础理论进行全面而深入的理解。这意味着需要投入大量的时间去研读经典的机器学习和深度学习教材,包括但不限于《统计学
- 人工智能之数学基础:线性空间
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能深度学习线性代数线性空间神经网络
本文重点本文我们将讲解线性空间的知识,它不仅是数学中非常重要的知识点,它在机器学习和深度学习中的价值也是非常重要的,在机器学习和深度学习中是可以通过线性空间来进行解释的。线性空间的直观理解线性空间可以看作是一个多维的“宇宙”,其中的“点”由向量表示,而“运动”则通过向量的加法和数乘来实现。这个宇宙中的每一个向量都可以看作是从原点出发到该点的一条有向线段,而线性空间的维度则决定了这个宇宙的大小和复杂
- 用大模型学大模型02-数学基础 微积分
wyg_031113
人工智能
https://metaso.cn/s/uxPBB9C我正在学习深度学习相关的数学知识,学到了微积分核心概念:导数(尤其是偏导数)、梯度、链式法则;积分与最优化(如梯度下降法的数学推导)给我一个入门级的完整教程和实例好吧,我现在需要帮用户整理一个关于深度学习中微积分核心概念的入门教程和实例。用户提到了导数、偏导数、梯度、链式法则,还有积分和优化比如梯度下降法。我得先理清楚这些概念之间的联系,然后结
- 用大模型学大模型03-数学基础 概率论
wyg_031113
概率论人工智能
https://metaso.cn/s/Jp0OU9w提示词:我正在学习深度学习相关的数学知识,学到了概率论与统计学部分,给我一个入门级的完整教程和实例。好的,我现在需要回答用户关于深度学习所需的概率论与统计学入门教程和实例的问题。用户希望得到一个完整的教程和实例,所以我要从我搜索到的资料中整理出相关的知识点和学习路径,并结合实例说明。首先,查看证据中的相关内容。提到花书学习笔记,涵盖了概率论、信
- 机器学习数学基础:21.特征值与特征向量
@心都
机器学习概率论人工智能
一、引言在现代科学与工程的众多领域中,线性代数扮演着举足轻重的角色。其中,特征值、特征向量以及相似对角化的概念和方法,不仅是线性代数理论体系的核心部分,更是解决实际问题的有力工具。无论是在物理学中描述系统的振动模式,还是在计算机科学里进行数据降维与图像处理,它们都发挥着关键作用。本教程将深入且全面地对这些内容展开讲解,旨在帮助读者透彻理解并熟练运用相关知识。二、基础知识准备(一)对角矩阵的高次幂计
- 分布式训练三大并行策略:数据、模型与流水线并行的本质解析
WHCIS
#分布式训练人工智能与机器学习分布式人工智能深度学习
截至2023年,大型语言模型的参数量已突破万亿级别(如GooglePaLM2达到3400亿参数),单卡显存容量(NVIDIAA10080GB)与计算能力(312TFLOPS)面临严峻挑战。分布式训练通过多维度并行策略实现:算力维度:聚合多卡计算能力存储维度:分布式参数存储通信维度:优化数据传输路径本文将深入剖析三大并行策略的数学本质。一、数据并行:分布式优化的数学基础1.1同步SGD的收敛性证明定
- 书籍-《信息科学的数学基础》
机器学习人工智能数学
书籍:MathematicalFoundationsofInformationSciences作者:EsfandiarHaghverdi,LiugenZhu出版:WorldScientificPublishingCompany编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《信息科学的数学基础》01书籍介绍这是一本简明扼要的书籍,旨在引导学生进入逻辑思维的基本原理和重要的数学结构的世界。这些知
- 书籍-《机器学习数学基础》
机器学习深度学习数学
书籍:MathematicsforMachineLearning作者:MarcPeterDeisenroth,A.AldoFaisal,ChengSoonOng出版:CambridgeUniversityPress编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《机器学习数学基础》01书籍介绍理解机器学习所需的基本数学工具包括线性代数、解析几何、矩阵分解、向量微积分、最优化、概率论和统计学。这
- 书籍-《强化学习数学基础》
强化学习数学人工智能
书籍:MathematicalFoundationsofReinforcementLearning作者:赵世钰出版:Springer编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《强化学习数学基础》01书籍介绍本书对基本概念、核心挑战和经典强化学习算法进行了数学但易于理解的介绍。它旨在帮助读者理解算法的理论基础,提供对其设计和功能的见解。整个过程中包括许多说明性示例。数学内容经过精心设计,以
- 初学者怎么入门大语言模型(LLM)
大模型
大语言模型(LLM)作为人工智能(AI)领域的核心技术之一,近年来受到了广泛的关注。对于初学者来说,入门LLM并非难事,但需要从理论学习、数学基础到实践操作逐步深入。掌握基础数学与编程技能,理解自然语言处理的相关概念,以及熟悉LLM的架构和应用,将为学习者铺平入门的道路。下面我们就来详细探讨如何从零开始入门大语言模型。一、了解大语言模型(LLM)的基本概念大语言模型(LLM)是通过海量文本数据进行
- AGI方向研究
微醺欧耶
agi
要成为一名合格的AGI(通用人工智能)实习生,你需要具备跨学科的知识体系、扎实的技术能力以及前沿研究视野。以下是基于你当前基础的能力扩展方向、关键研究领域以及未来发展的详细分析:---###**一、AGI实习生需具备的核心能力**####1.**数学与理论基础**-**数学基础**:线性代数(矩阵运算、特征值)、概率统计(贝叶斯理论、分布模型)、微积分(梯度优化)、信息论(熵、KL散度)。-**计
- OSG学习笔记 - 数学基础(1)
听风者868
OSGc++图形学其他学习opengl
1、OSG数学基础OSG采用的世界坐标系是左手坐标系,这一点与OpenGL保持一样的,但坐标轴的方向不一样。·OSG的X轴向右,Y轴朝里,Z轴向上。·OpenGL的X轴向右,Y轴向上,Z轴朝外。1.1世界坐标系-物体坐标系转换世界坐标系-物理坐标系描述的问题主要是关于物体本身的。osg::PositionAttitudeTransform//位置变换类osg::MatrixTransform//矩
- AI学习专题(一)LLM技术路线
王钧石的技术博客
大模型人工智能学习ai
阶段1:AI及大模型基础(1-2个月)数学基础线性代数(矩阵、特征值分解、SVD)概率论与统计(贝叶斯定理、极大似然估计)最优化方法(梯度下降、拉格朗日乘子法)编程&框架Python(NumPy、Pandas、Matplotlib)PyTorch&TensorFlow基础HuggingFaceTransformers入门深度学习基础机器学习基础(监督/无监督学习、正则化、过拟合)反向传播、优化器(
- 深度学习-数学基础-01
神经网络深度学习
下面的内容是豆包总结的。学习神经网络需要以下数学基础:线性代数向量与矩阵神经网络中的数据通常以向量(如输入特征向量)和矩阵(如权重矩阵)的形式表示。理解向量的点积、加法、减法等运算,以及矩阵的乘法、转置等操作至关重要。例如,在一个简单的全连接神经网络中,输入层到隐藏层的计算就是通过输入向量与权重矩阵相乘来实现的。矩阵的秩、特征值和特征向量的概念在神经网络的一些高级主题如主成分分析(PCA)降维和深
- 机器学习数学基础:20.方程组解的结构
@心都
机器学习数学基础机器学习人工智能
一、教程简介本教程专门为线性代数零基础的小白打造,旨在全面且细致地讲解解方程组与基础解系的相关知识,助力大家逐步扎实地掌握这一重要内容板块。二、知识目标透彻理解非齐次与齐次线性方程组的定义、本质区别以及对应的解法。熟练掌握判断方程组解的存在性的方法,精准把握秩在其中起到的决定性作用。能够独立且准确地求解齐次线性方程组,并规范地表示出其通解。精通判断一个向量组是否为齐次线性方程组的基础解系的方法,并
- 机器学习数学基础:18.向量组及其线性组合
@心都
机器学习数学基础机器学习概率论线性代数
向量组与线性表示:案例与教程详解一、基础概念(一)向量组向量组是若干同位数列向量组成的集合。比如在平面直角坐标系中,向量组{α⃗1=[10],α⃗2=[01]}\{\vec{\alpha}_1\=\begin{bmatrix}1\\0\end{bmatrix},\vec{\alpha}_2\=\begin{bmatrix}0\\1\end{bmatrix}\}{α1=[10],α2=[01]},这
- 机器学习数学基础:8.泰勒公式
@心都
机器学习数学基础机器学习人工智能
一、泰勒公式的由来:为啥我们需要它?同学们,想象一下,你拿到了一块超级复杂、弯弯曲曲,就像一团乱麻似的拼图(假设这拼图代表一个复杂函数,比如一条有各种起伏的波浪线),而你手头只有一些简单的积木块(这里的积木块就是多项式啦),现在要你用这些简单积木拼出拼图的模样,是不是感觉无从下手?这时候,泰勒公式就像一位智慧的导师闪亮登场,它会告诉你:“别慌,孩子,我来教你怎么挑选积木块,怎么决定它们的形状和大小
- 机器学习数学基础:3.偏导数
@心都
机器学习数学基础机器学习人工智能
偏导数教程一、偏导数的引入在我们研究一元函数y=f(x)y=f(x)y=f(x)时,导数y′=f′(x)y^\prime=f^\prime(x)y′=f′(x)表示函数yyy关于xxx的变化率。然而,当我们遇到多元函数,例如二元函数z=f(x,y)z=f(x,y)z=f(x,y)时,情况变得更加复杂。我们可能会想知道函数zzz在xxx方向或yyy方向上的变化率,这就引入了偏导数的概念。二、偏导数的
- 机器学习数学基础:2.连续性与导数
@心都
机器学习数学基础机器学习概率论人工智能
函数连续性、瞬时速度、导数相关知识一、函数连续性(一)函数在某点连续的条件有定义:函数在点x0x_0x0处要有明确、确定的值f(x0)f(x_0)f(x0)。例如,f(x)=1xf(x)=\frac{1}{x}f(x)=x1在x=0x=0x=0处无定义,不满足此条件,所以在x=0x=0x=0处不连续。极限存在:当xxx从x0x_0x0左侧(x→x0−x\tox_0^{-}x→x0−)和右侧(x→x
- 机器学习数学基础:19.线性相关与线性无关
@心都
机器学习数学基础机器学习概率论线性代数
一、线性相关与线性无关的定义(一)线性相关想象我们有一组向量,就好比是一群有着不同“力量”和“方向”的小伙伴。给定的向量组α⃗1,α⃗2,⋯ ,α⃗m\vec{\alpha}_1,\vec{\alpha}_2,\cdots,\vec{\alpha}_mα1,α2,⋯,αm,如果能找到不全为零的数k1,k2,⋯ ,kmk_1,k_2,\cdots,k_mk1,k2,⋯,km,让k1α⃗1+k2α⃗2
- 机器学习数学基础:14.矩阵的公式
@心都
机器学习数学基础机器学习矩阵人工智能
1.操作顺序可交换对于矩阵AAA,若存在两种运算???和???,使得(A?)?=(A?)?(A^{?})^{?}\=(A^{?})^{?}(A?)?=(A?)?,这意味着这两种运算的顺序可以交换。由此我们得到以下三个重要等式:(A∗)−1=(A−1)∗(A^{*})^{-1}\=(A^{-1})^{*}(A∗)−1=(A−1)∗:已知伴随矩阵与逆矩阵的关系A∗=∣A∣A−1A^{*}\=|A|A^
- 【AI原理解析】— Gemini模型
coolkidlan
AI学习路径AIGC人工智能AIGC
目录1.模型概述定义特点2.模型基础与架构模型架构模型尺寸3.多模态处理能力输入处理数据处理训练过程4.技术细节与优化预训练上下文长度注意机制5.安全性与编程能力安全性评估编程能力6.模型发布与应用发布时间应用方向7.性能评估8.数学基础8.1Transformer解码器基础8.1.1自注意力机制(Self-Attention)8.1.2前馈神经网络(Feed-ForwardNeuralNetwo
- 机器学习数学基础:11.行列式的多种计算方法
@心都
机器学习数学基础机器学习线性代数人工智能
行列式的多种计算方法行(列)相等型对于行列式∣1+a11122+a22333+a34444+a∣\begin{vmatrix}1+a&1&1&1\\2&2+a&2&2\\3&3&3+a&3\\4&4&4&4+a\end{vmatrix}1+a23412+a34123+a41234+a,通过将第一行元素都变为10+a10+a10+a,得到∣10+a10+a10+a10+a22+a22333+a344
- 自动驾驶领域成长方案
树上求索
自动驾驶人工智能机器学习
一、学习目标成为自动驾驶领域专家,全面掌握自动驾驶技术体系,能独立进行自动驾驶系统设计、开发与优化,解决实际工程问题。二、成长阶段(一)基础理论奠基期(1-2年)专业知识学习:学习数学(高等数学、线性代数、概率论与数理统计、数值分析等),为理解算法和模型提供数学基础;深入研究自动驾驶涉及的专业课程,如控制理论、传感器原理(激光雷达、摄像头、毫米波雷达等)、机器学习(监督学习、无监督学习、深度学习)
- 深度学习篇---深度学习相关知识点&关键名词含义
Ronin-Lotus
深度学习篇深度学习人工智能机器学习pytorchpaddlepaddlepython
文章目录前言第一部分:相关知识点一、基础铺垫层(必须掌握的核心基础)1.数学基础•线性代数•微积分•概率与统计2.编程基础3.机器学习基础二、深度学习核心层(神经网络与训练机制)1.神经网络基础2.激活函数(ActivationFunction)3.损失函数(LossFunction)4.优化算法(Optimization)5.反向传播(Backpropagation)6.正则化与调优三、进阶模型
- 为什么关系模型不叫表模型
昊昊该干饭了
mysqlIT知识数据库oraclemysql
在数据库设计中,关系模型(RelationalModel)是最广泛应用的模型之一。然而,许多初学者容易将其简单地理解为"表模型",因为在实际应用中,数据通常以表的形式存储和展示。那么,为什么关系模型不被直接称为"表模型"呢?本篇文章将从数学基础、逻辑与物理实现、数据库完整性、数据独立性及查询操作等多个角度,深入剖析关系模型的本质,并解释它为何不同于一个简单的表结构。目录1.关系模型的数学基础1.1
- 区块链的数学基础:核心原理与应用解析
silver687
区块链
区块链技术的核心原理和应用离不开其强大的数学基础,以下是对其数学基础、核心原理与应用的详细解析:区块链的数学基础区块链的数学基础主要包括以下几个核心领域:1.密码学:密码学是区块链安全性的基石,主要保障数据的机密性、完整性和不可抵赖性。其中,对称加密算法(如AES)加密和解密使用相同密钥,计算效率高,但不适用于区块链的公开网络环境;非对称加密使用一对密钥(公钥和私钥),用户通过私钥签名交易,其他人
- 《机器学习数学基础》补充资料:第343页结论证明
CS创新实验室
数学基础机器学习人工智能概率论
证明E(XT)=E(X)TE(\pmb{X}^{\text{T}})=E(\pmb{X})^{\text{T}}E(XT)=E(X)T《机器学习数学基础》第343页,有这样一句话:对于多维随机变量X\pmb{X}X,根据数学期望的定义,有:E(XT)=E(X)TE(\pmb{X}^{\text{T}})=E(\pmb{X})^{\text{T}}E(XT)=E(X)T。有读者反应,希望能给出有关证
- 2025最新最全AI大模型系统学习路线
大模型老炮
人工智能学习大模型知识图谱大模型入门AI大模型大模型学习
随着技术的进步,大模型如OpenAI的GPT-4和Sora、Google的BERT和Gemini等已经展现出了惊人的能力-从理解和生成自然语言到创造逼真的图像及视频。所以掌握大模型的知识和技能变得越来越重要。下面是学习大模型的一些建议,供大家参考。必备基础知识**数学基础:**深入理解线性代数、概率论和统计学、微积分等基础数学知识。**编程基础:**熟练掌握至少一种编程语言,推荐Python,因为
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs