线性表_栈_逆波兰计算式(Reverse Polish Notation)

1.概念

    逆波兰式(Reverse Polish notation,RPN,或逆波兰记法),也叫后缀表达式(将运算符写在操作数之后)

    实现逆波兰式的算法,难度并不大,但为什么要将看似简单的中序表达式转换为复杂的逆波兰式?原因就在于这个简单是相对人类的思维结构来说的,对计算机而言中序表达式是非常复杂的结构。相对的,逆波兰式在计算机看来却是比较简单易懂的结构。因为计算机普遍采用的内存结构是栈式结构,它执行先进后出的顺序。

    新建一个表达式,如果当前字符为变量或者为数字,则压栈,如果是运算符,则将栈顶两个元素弹出作相应运算,结果再入栈,最后当表达式扫描完后,栈里的就是结果。图示如下:

线性表_栈_逆波兰计算式(Reverse Polish Notation)_第1张图片

2.代码

/*
*RPN:Reverse Polish Notation
*逆波兰表达式:将数据存储在栈中进行计算时,入栈时将按照以下顺序
*如:(1-2)*(4+5) RPN是: 1 2 - 4 5 + *
*如: 5 -(6+7)* 8 + 9 / 4  RPN是:  5 6 7 + 8 * - 9 4 / 
*/

#include 
#include 
#include 

#define STACK_INIT_SIZE 20
#define STACKINCREMENT  10
#define MAXBUFFER       10

typedef double ElemType;
typedef struct
{
	ElemType *base;
	ElemType *top;
	int stacksize;
}sqStack;

//初始化栈
InitStack(sqStack  *s)
{
	s->base = (ElemType *)malloc(STACK_INIT_SIZE * sizeof(ElemType));
	if (!s->base) exit(0);
	s->top = s->base;
	s->stacksize = STACK_INIT_SIZE;
}

//入栈操作
Push(sqStack  *s, ElemType e)
{
	if (s->top - s->base >= s->stacksize)
	{
		s->base = (ElemType *)malloc((STACK_INIT_SIZE + STACKINCREMENT) * sizeof(ElemType));
		if (!s->base) exit(0);
		s->top = s->base + s->stacksize;
	}

	*(s->top) = e;
	s->top++;
}

//出栈操作
Pop(sqStack  *s, ElemType *e)
{
	if (s->top == s->base) return;
	*e = *--(s->top);
}

//获取栈长度
int StackLen(sqStack s)
{
	return (s.top - s.base);
}

int main()
{
	sqStack s;
	char c;
	double d, e;
	char str[MAXBUFFER];
	int i = 0;
	InitStack(&s);

	printf("Input datas with Reverse Polish Notation,Ending with '#' \n");
	scanf("%c", &c);

	while (c != '#')
	{
		while (isdigit(c))  //数字与空格的处理
		{
			str[i++] = c;
			str[i] = '\0';
			if (i >= 10)
			{
				printf("ERROR:Data is out of range \n");
				return -1;
			}
			scanf("%c", &c);
			if (c == ' ')
			{
				d = atof(str);
				Push(&s, d);
				i = 0;
				break; 
			}
		}
		switch (c)        //四则运算符号处理
		{
		case '+':
			Pop(&s, &e);
			Pop(&s, &d);
			Push(&s, d + e);
			break;
		case '-':
			Pop(&s, &e);
			Pop(&s, &d);
			Push(&s, d - e);
			break;
		case '*':
			Pop(&s, &e);
			Pop(&s, &d);
			Push(&s, d * e);
			break;
		case '/':
			Pop(&s, &e);
			Pop(&s, &d);
			if (e != 0)
			{
				Push(&s, d / e);
			}
			else
			{
				printf("ERROR:Input Wrong");
				return -1;
			}
			break;
		}
		scanf("%c", &c);
	}
	Pop(&s, &d);
	printf("Result is: %f\n", d);

	return 0;
}


3.运行结果

5 -(6+7)* 8 + 9 / 4  RPN是:  5 6 7 + 8 * - 9 4 / 


你可能感兴趣的:(数据结构与算法)