ArrayList 实现了 List 接口,是一个有序容器,即存放元素的顺序与添加顺序相同,允许添加相同元素,包括 null ,底层通过数组来实现数据存储,容器内存储的元素个数不能超出数组空间。当向容器中添加元素时如果发现数组空间不足,容器会自动对底层数组进行扩容操作
package list;
import java.util.*;
import java.util.function.Consumer;
import java.util.function.Predicate;
import java.util.function.UnaryOperator;
public class ArrayList extends AbstractList
implements List, RandomAccess, Cloneable, java.io.Serializable
{
//序列化id
private static final long serialVersionUID = 8683452581122892189L;
//集合默认的长度
private static final int DEFAULT_CAPACITY = 10;
//集合大小设置为0时对应的数组
private static final Object[] EMPTY_ELEMENTDATA = {};
//初始化使用无参构造器时对应的数组,即 List list = new ArrayList<>();
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
/**
*包含实际元素的数组 注意这里使用的关键字 transient 这个是让其不被序列化
* 举个栗子 即A传递一个数组到B 其实实际的元素并没有进行传递
* 这么做的好处:节省存储空间
* 问题来了,实际的元素并没有被序列化传输,那么为什么传输后的数据却并没有丢失?
* 当我们get操作元素时,我们是直接从数组中去取,整个数组的序列化意义不大,反而会消耗比较大的存储空间
* 这里我们可以看到当前类为泛型类,但存储的数组又变成了Object,是不是有点奇怪?
* 这个在后面的 集合转数组进行了处理,即生成元素对应类型的数组
*/
transient Object[] elementData;
//集合大小
private int size;
/**
* 有参构造器
*
* @param initialCapacity 集合的初始长度 这里面Capacity 翻译为能力,我们可以理解为长度
* @throws IllegalArgumentException 非法异常 此时长度只能为正整数
*/
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) {
this.elementData = new Object[initialCapacity];
} else if (initialCapacity == 0) {
this.elementData = EMPTY_ELEMENTDATA;
} else {
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
}
}
/**
* 无参构造器,将前面定义的数组给到实际的数组
*/
public ArrayList() {
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
/**
* 有参构造器,给了初始元素
*
* @param c 实现了Collection的元素 c
* @throws NullPointerException 元素为空
*/
public ArrayList(Collection extends E> c) {
elementData = c.toArray();
//这里是一个先赋值,再比较
if ((size = elementData.length) != 0) {
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
} else {
// 创建了大小为0的集合
this.elementData = EMPTY_ELEMENTDATA;
}
}
/**
* modCount 记录集合原来的长度,不可序列化,通过与扩展后的长度比较,判断结构是否发生变化
*移除不包含元素的数组空间,将数组的空间缩减到和集合 同个大小size
*/
public void trimToSize() {
//每当集合的结构发生变化时,modCount 就会递增
//当在对集合进行迭代操作时,迭代器会检查此参数值
//如果检查到此参数的值发生变化,就说明在迭代的过程中集合的结构发生了变化,因此会直接抛出异常
modCount++;
if (size < elementData.length) {
elementData = (size == 0)
? EMPTY_ELEMENTDATA
: Arrays.copyOf(elementData, size);
}
}
/**
* 确保长度(初始长度)
*
* @param minCapacity 最小长度
*/
public void ensureCapacity(int minCapacity) {
//默认的最小长度,这个三元表达式的意思是 如果实际元素的个数为0,则数组分配内存为0,否则分配10个内存空间
int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
? 0
: DEFAULT_CAPACITY;
if (minCapacity > minExpand) {
//当minCapacity大于默认的最小长度,我们需要扩容,即让数组变长
ensureExplicitCapacity(minCapacity);
}
}
//确保长度(add添加操作时,readObject读取操作时,我们可以通过方法查找找到这些)
private void ensureCapacityInternal(int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
//对无参构造即 默认长度为10 对比当前长度 取最大的值
minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
}
//这里统一进行操作后的长度进行确保长度处理
ensureExplicitCapacity(minCapacity);
}
//确保长度(add添加操作后,readObject读取操作后)
private void ensureExplicitCapacity(int minCapacity) {
//当集合的结构发生变化时,modCount 就会递增
modCount++;
// 这里进行判断,即操作后的长度大于数组本身已有的长度,需要扩容
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
/**
* 数组分配的最大值
*/
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
/**
* 扩容
*
* @param minCapacity 需要扩展到的长度
*/
private void grow(int minCapacity) {
// 扩展前的长度
int oldCapacity = elementData.length;
//扩展后的长度 即原长度的1.5倍 右移以为/2
int newCapacity = oldCapacity + (oldCapacity >> 1);
//1.5倍长度如果小于需要扩展到的长度,则直接将需要扩展的长度 赋予扩展后的长度
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
//如果扩展后的长度大于数组分配的最大值,则进行 执行巨大长度方法
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// 将元素复制到新的数组,且分配新的存储空间
elementData = Arrays.copyOf(elementData, newCapacity);
}
// 需要扩展到的长度大于数组分配的最大值,则给予Integer的最大值,反之给予数组分配的最大值
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
/**
*集合的大小
*/
public int size() {
return size;
}
/**
* 集合是否为空
*/
public boolean isEmpty() {
return size == 0;
}
/**
* 集合是否包含对象 o
*/
public boolean contains(Object o) {
//根据o对象是否在数组索引来判断是否包含
return indexOf(o) >= 0;
}
/**
* 获取对象 o 的索引
* -1 找不到对象 o 的索引,即数组不包含该对象
* 这里对o进行了判空处理( 对象 o 可能为空)
*/
public int indexOf(Object o) {
if (o == null) {
for (int i = 0; i < size; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = 0; i < size; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
/**
* 获取对象 o 的最后一个索引
* -1 找不到对象 o 的索引,即数组不包含该对象
* 可容易知道 indexOf是获得第一个索引,ArrayList可以存储相同的元素
*/
public int lastIndexOf(Object o) {
if (o == null) {
for (int i = size-1; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
for (int i = size-1; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
/**
* 克隆,这是所有类都有的方法
*/
public Object clone() {
try {
ArrayList> v = (ArrayList>) super.clone();
v.elementData = Arrays.copyOf(elementData, size);
//新的集合,变为0
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError(e);
}
}
/**
* 集合转数组(返回的是Object对象)
*/
public Object[] toArray() {
return Arrays.copyOf(elementData, size);
}
/**
* 集合转数组(返回的对象根据传入的数组对象一直)
*/
public T[] toArray(T[] a) {
if (a.length < size)
// 新的数组,使用泛型给定对象类型
return (T[]) Arrays.copyOf(elementData, size, a.getClass());
//将elementData复制给a
System.arraycopy(elementData, 0, a, 0, size);
if (a.length > size)
a[size] = null;
return a;
}
// 通过索引访问元素
E elementData(int index) {
return (E) elementData[index];
}
/**
* 获取索引的值
*/
public E get(int index) {
//索引检查
rangeCheck(index);
return elementData(index);
}
/**
* 给指定索引的元素进行赋值
*/
public E set(int index, E element) {
rangeCheck(index);
//这里原来集合的元素对应数组中索引位置所有的元素,进行赋值操作后,
// 这个对应关系一直不变,所以返回的仍是 oldValue
E oldValue = elementData(index);
elementData[index] = element;
return oldValue;
}
/**
* 添加元素
*/
public boolean add(E e) {
//集合大小+1,需要考虑数组是否需要扩容
ensureCapacityInternal(size + 1);
//数组赋值
elementData[size++] = e;
return true;
}
/**
* 指定索引添加元素
*/
public void add(int index, E element) {
//对于添加的索引检查
rangeCheckForAdd(index);
//添加元素时确保长度方法
ensureCapacityInternal(size + 1);
//复制新的数组。将index后的元素后移
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
//index位置放入需添加的元素
elementData[index] = element;
//集合长度+1
size++;
}
/**
* 移除指定索引的值,返回该元素
*/
public E remove(int index) {
rangeCheck(index);
//当集合的结构发生变化时,modCount 就会递增
modCount++;
//得到索引元素
E oldValue = elementData(index);
//进行移动次数计算,因为数组存储是连续的空间
int numMoved = size - index - 1;
//删除最后一位元素,数组不需要移动,此时numMoved为0,所以要进行判断
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
//此处帮助GC 因为最后一位索引失去了引用
elementData[--size] = null;
return oldValue;
}
/**
* 移除集合中的对象 o (第一个)
* 成功移除返回true反之为false
*/
public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}
/*
* 快速移除(不需要索引检查和元素返回)
*/
private void fastRemove(int index) {
//当集合的结构发生变化时,modCount 就会递增
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null;
}
/**
* 清空list
*/
public void clear() {
//当集合的结构发生变化时,modCount 就会递增
modCount++;
// 此处帮助GC
for (int i = 0; i < size; i++)
elementData[i] = null;
//集合长度设为0
size = 0;
}
/**
* 添加实现Collection接口的集合 c
*/
public boolean addAll(Collection extends E> c) {
Object[] a = c.toArray();
int numNew = a.length;
//添加时的长度判断
ensureCapacityInternal(size + numNew);
System.arraycopy(a, 0, elementData, size, numNew);
size += numNew;
return numNew != 0;
}
/**
* 指定索引位置添加数据集c
*/
public boolean addAll(int index, Collection extends E> c) {
rangeCheckForAdd(index);
Object[] a = c.toArray();
int numNew = a.length;
//添加时的长度判断
ensureCapacityInternal(size + numNew);
//进行移除次数的计算
int numMoved = size - index;
if (numMoved > 0)
System.arraycopy(elementData, index, elementData, index + numNew,
numMoved);
System.arraycopy(a, 0, elementData, index, numNew);
size += numNew;
return numNew != 0;
}
/**
* 移除两个索引之间的所有元素
*/
protected void removeRange(int fromIndex, int toIndex) {
//当集合的结构发生变化时,modCount 就会递增
modCount++;
int numMoved = size - toIndex;
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved);
// 新的集合长度
int newSize = size - (toIndex-fromIndex);
//此处帮助GC
for (int i = newSize; i < size; i++) {
elementData[i] = null;
}
size = newSize;
}
/**
* 索引合法检查
*/
private void rangeCheck(int index) {
//索引超过过了集合大小出现异常
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
/**
* 对于添加的索引检查
*/
private void rangeCheckForAdd(int index) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
/**
* 得到一个字符串,
* 根据索引得到含索引和长度的字符串
*/
private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+size;
}
/**
* 移除集合中所有 c 包含的相同元素
*/
public boolean removeAll(Collection> c) {
//非空检查
Objects.requireNonNull(c);
//返回值为批量移除的结果
return batchRemove(c, false);
}
/**
* 只保留集合和 c 包含的相同数据
*/
public boolean retainAll(Collection> c) {
Objects.requireNonNull(c);
return batchRemove(c, true);
}
//批量移除
//如果有改动到集合,则返回 true,否则返回 false
private boolean batchRemove(Collection> c, boolean complement) {
final Object[] elementData = this.elementData;
int r = 0, w = 0;
boolean modified = false;
try {
for (; r < size; r++)
//elementData 中符合条件的元素将逐渐从尾部向头部集中
// complement为true时,即elementData中有和c相同的元素,且元素想数组头部集中
// complement为false时,即elementData中没有和c相同的元素,且元素想数组头部集中
if (c.contains(elementData[r]) == complement)
elementData[w++] = elementData[r];
} finally {
//排除空集合进行removeAll或retainAll操作
if (r != size) {
//得到新的数组
System.arraycopy(elementData, r,
elementData, w,
size - r);
w += size - r;
}
//新的数组和原数组长度不一样(减小)
if (w != size) {
// //此处帮助GC
for (int i = w; i < size; i++)
elementData[i] = null;
//当集合的结构发生变化时,modCount 就会递增
modCount += size - w;
size = w;
//有改动,返回true
modified = true;
}
}
return modified;
}
/**
* 写入对象,因为集合中元素可能是对象,对象可能有多个属性,进行序列化读写比较繁琐
* 此时要求元素必须序列化
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException{
//记录新的集合的结构,通过modCount
int expectedModCount = modCount;
//通过数据流写入对象
s.defaultWriteObject();
// 写入集合长度
s.writeInt(size);
// 写入每个元素
for (int i=0; i 0) {
// 确保长度
ensureCapacityInternal(size);
Object[] a = elementData;
// 依次读出
for (int i=0; i listIterator(int index) {
//索引不合法
if (index < 0 || index > size)
throw new IndexOutOfBoundsException("Index: "+index);
return new ListItr(index);
}
/**
* 默认的集合元素迭代器,即索引为0
*/
public ListIterator listIterator() {
return new ListItr(0);
}
/**
* 返回集合迭代器
*/
public Iterator iterator() {
return new Itr();
}
/**
* 集合迭代器 类
*/
private class Itr implements Iterator {
// 指向下一个元素的索引
int cursor;
// 最后一个元素的索引,-1表示元素未返回或移除
int lastRet = -1;
int expectedModCount = modCount;
public boolean hasNext() {
return cursor != size;
}
//下一个元素
@SuppressWarnings("unchecked")
public E next() {
//检查
checkForComodification();
int i = cursor;
//超出集合长度异常
if (i >= size)
throw new NoSuchElementException();
//新的数组
Object[] elementData = ArrayList.this.elementData;
//超出数组长度异常
if (i >= elementData.length)
throw new ConcurrentModificationException();
//cursor递增
cursor = i + 1;
//新的数组元素赋值并返回
return (E) elementData[lastRet = i];
}
//移除
public void remove() {
//元素位置移除
if (lastRet < 0)
throw new IllegalStateException();
//检查
checkForComodification();
try {
//开始移除指定索引位置(lastRet)的元素
ArrayList.this.remove(lastRet);
//cursor应递减,从上知 原来 lastRet+1,此时lastRet
cursor = lastRet;
//最后给到-1 表示移除完毕了
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
//遍历集合从索引 cursor 开始之后剩下的元素
@Override
@SuppressWarnings("unchecked")
public void forEachRemaining(Consumer super E> consumer) {
//非空检查
Objects.requireNonNull(consumer);
//集合长度
final int size = ArrayList.this.size;
int i = cursor;
//corsor超过集合长度,直接返回
if (i >= size) {
return;
}
final Object[] elementData = ArrayList.this.elementData;
//corsor超过数组长度,抛出异常
if (i >= elementData.length) {
throw new ConcurrentModificationException();
}
//corsor不等于集合大小且 ,调用accept进行遍历
while (i != size && modCount == expectedModCount) {
consumer.accept((E) elementData[i++]);
}
// 遍历结束后,给cursor lastRet赋值并检查
cursor = i;
lastRet = i - 1;
checkForComodification();
}
//检查集合的结构是否发生变化
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
/**
* 集合元素迭代器 ,继承集合迭代器
*/
private class ListItr extends Itr implements ListIterator {
//构造方法
ListItr(int index) {
super();
cursor = index;
}
public boolean hasPrevious() {
return cursor != 0;
}
public int nextIndex() {
return cursor;
}
public int previousIndex() {
return cursor - 1;
}
//得到前一个元素
@SuppressWarnings("unchecked")
public E previous() {
checkForComodification();
int i = cursor - 1;
if (i < 0)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i;
return (E) elementData[lastRet = i];
}
//设置当前索引的元素
public void set(E e) {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
ArrayList.this.set(lastRet, e);
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
//在当前索引添加元素
public void add(E e) {
checkForComodification();
try {
int i = cursor;
ArrayList.this.add(i, e);
cursor = i + 1;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
}
/**
* 指定起始索引 返回截取新的集合(子集合)
*/
public List subList(int fromIndex, int toIndex) {
//索引、长度检验
subListRangeCheck(fromIndex, toIndex, size);
return new SubList(this, 0, fromIndex, toIndex);
}
//索引、长度检验
static void subListRangeCheck(int fromIndex, int toIndex, int size) {
if (fromIndex < 0)
throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
if (toIndex > size)
throw new IndexOutOfBoundsException("toIndex = " + toIndex);
if (fromIndex > toIndex)
throw new IllegalArgumentException("fromIndex(" + fromIndex +
") > toIndex(" + toIndex + ")");
}
//子集合 基本和、ArrayList类似,不详细注释了
private class SubList extends AbstractList implements RandomAccess {
//父集合对象
private final AbstractList parent;
private final int parentOffset;
private final int offset;
int size;
//子集合构造方法
SubList(AbstractList parent,
int offset, int fromIndex, int toIndex) {
this.parent = parent;
this.parentOffset = fromIndex;
this.offset = offset + fromIndex;
this.size = toIndex - fromIndex;
this.modCount = ArrayList.this.modCount;
}
public E set(int index, E e) {
//索引检查
rangeCheck(index);
//检查
checkForComodification();
//和ArrayList赋值类似
E oldValue = ArrayList.this.elementData(offset + index);
ArrayList.this.elementData[offset + index] = e;
return oldValue;
}
public E get(int index) {
rangeCheck(index);
checkForComodification();
return ArrayList.this.elementData(offset + index);
}
public int size() {
checkForComodification();
return this.size;
}
public void add(int index, E e) {
//索引检查(新增)
rangeCheckForAdd(index);
checkForComodification();
parent.add(parentOffset + index, e);
this.modCount = parent.modCount;
this.size++;
}
public E remove(int index) {
rangeCheck(index);
checkForComodification();
E result = parent.remove(parentOffset + index);
this.modCount = parent.modCount;
this.size--;
return result;
}
//移除指定索引区间内的所有元素
protected void removeRange(int fromIndex, int toIndex) {
checkForComodification();
parent.removeRange(parentOffset + fromIndex,
parentOffset + toIndex);
this.modCount = parent.modCount;
this.size -= toIndex - fromIndex;
}
public boolean addAll(Collection extends E> c) {
return addAll(this.size, c);
}
public boolean addAll(int index, Collection extends E> c) {
rangeCheckForAdd(index);
int cSize = c.size();
if (cSize==0)
return false;
checkForComodification();
parent.addAll(parentOffset + index, c);
this.modCount = parent.modCount;
this.size += cSize;
return true;
}
public Iterator iterator() {
return listIterator();
}
public ListIterator listIterator(final int index) {
checkForComodification();
rangeCheckForAdd(index);
final int offset = this.offset;
return new ListIterator() {
int cursor = index;
int lastRet = -1;
int expectedModCount = ArrayList.this.modCount;
public boolean hasNext() {
return cursor != SubList.this.size;
}
@SuppressWarnings("unchecked")
public E next() {
checkForComodification();
int i = cursor;
if (i >= SubList.this.size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (offset + i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i + 1;
return (E) elementData[offset + (lastRet = i)];
}
public boolean hasPrevious() {
return cursor != 0;
}
@SuppressWarnings("unchecked")
public E previous() {
checkForComodification();
int i = cursor - 1;
if (i < 0)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (offset + i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i;
return (E) elementData[offset + (lastRet = i)];
}
@SuppressWarnings("unchecked")
public void forEachRemaining(Consumer super E> consumer) {
Objects.requireNonNull(consumer);
final int size = SubList.this.size;
int i = cursor;
if (i >= size) {
return;
}
final Object[] elementData = ArrayList.this.elementData;
if (offset + i >= elementData.length) {
throw new ConcurrentModificationException();
}
while (i != size && modCount == expectedModCount) {
consumer.accept((E) elementData[offset + (i++)]);
}
// update once at end of iteration to reduce heap write traffic
lastRet = cursor = i;
checkForComodification();
}
public int nextIndex() {
return cursor;
}
public int previousIndex() {
return cursor - 1;
}
public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
SubList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = ArrayList.this.modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
public void set(E e) {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
ArrayList.this.set(offset + lastRet, e);
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
public void add(E e) {
checkForComodification();
try {
int i = cursor;
SubList.this.add(i, e);
cursor = i + 1;
lastRet = -1;
expectedModCount = ArrayList.this.modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
final void checkForComodification() {
if (expectedModCount != ArrayList.this.modCount)
throw new ConcurrentModificationException();
}
};
}
public List subList(int fromIndex, int toIndex) {
subListRangeCheck(fromIndex, toIndex, size);
return new SubList(this, offset, fromIndex, toIndex);
}
//索引检查
private void rangeCheck(int index) {
if (index < 0 || index >= this.size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
//索引检查(新增)
private void rangeCheckForAdd(int index) {
if (index < 0 || index > this.size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+this.size;
}
//检查集合的结构发生变化
private void checkForComodification() {
if (ArrayList.this.modCount != this.modCount)
throw new ConcurrentModificationException();
}
public Spliterator spliterator() {
checkForComodification();
return new ArrayListSpliterator(ArrayList.this, offset,
offset + this.size, this.modCount);
}
}
//遍历集合元素
@Override
public void forEach(Consumer super E> action) {
Objects.requireNonNull(action);
final int expectedModCount = modCount;
@SuppressWarnings("unchecked")
final E[] elementData = (E[]) this.elementData;
final int size = this.size;
//如果 modCount 值被改动,则直接停止遍历并抛出异常
for (int i=0; modCount == expectedModCount && i < size; i++) {
//将集合元素依次传递给 accept 方法
action.accept(elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
/**
* 返回可分割迭代器
*/
@Override
public Spliterator spliterator() {
return new ArrayListSpliterator<>(this, 0, -1, 0);
}
/** ArrayList可分割迭代器*/
static final class ArrayListSpliterator implements Spliterator {
/*
*
*/
private final ArrayList list;
// 起始位置(包含),advance/split操作时会修改
private int index;
//结束位置(不包含),-1 表示到最后一个元素
private int fence;
// 结束时的ModCount
private int expectedModCount;
/** 构造器 */
ArrayListSpliterator(ArrayList list, int origin, int fence,
int expectedModCount) {
this.list = list;
this.index = origin;
this.fence = fence;
this.expectedModCount = expectedModCount;
}
//结束位置获取
// 首次初始化石需对fence和expectedModCount进行赋值
private int getFence() {
int hi;
ArrayList lst;
if ((hi = fence) < 0) {
if ((lst = list) == null)
hi = fence = 0;
else {
expectedModCount = lst.modCount;
hi = fence = lst.size;
}
}
return hi;
}
//分割list,返回一个新分割出的spliterator实例
public ArrayListSpliterator trySplit() {
//hi为当前的结束位置
//lo 为起始位置
//计算中间的位置
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
//当lo>=mid,表示不能在分割,返回null
//当lo= mid) ? null :
new ArrayListSpliterator(list, lo, index = mid,
expectedModCount);
}
//返回true 时,只表示可能还有元素未处理
//返回false 时,没有剩余元素处理了。。。
public boolean tryAdvance(Consumer super E> action) {
if (action == null)
throw new NullPointerException();
//hi为当前的结束位置
//i 为起始位置
int hi = getFence(), i = index;
//还有剩余元素未处理时
if (i < hi) {
//处理i位置,index+1
index = i + 1;
@SuppressWarnings("unchecked") E e = (E)list.elementData[i];
action.accept(e);
//遍历时,结构发生变更,抛错
if (list.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
return false;
}
//顺序遍历处理所有剩下的元素
public void forEachRemaining(Consumer super E> action) {
int i, hi, mc; // hoist accesses and checks from loop
ArrayList lst; Object[] a;
if (action == null)
throw new NullPointerException();
if ((lst = list) != null && (a = lst.elementData) != null) {
if ((hi = fence) < 0) {
mc = lst.modCount;
hi = lst.size;
}
else
mc = expectedModCount;
if ((i = index) >= 0 && (index = hi) <= a.length) {
for (; i < hi; ++i) {
@SuppressWarnings("unchecked") E e = (E) a[i];
action.accept(e);
}
//遍历时发生结构变更时抛出异常
if (lst.modCount == mc)
return;
}
}
throw new ConcurrentModificationException();
}
public long estimateSize() {
return (long) (getFence() - index);
}
public int characteristics() {
return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
}
}
//移除满足条件的
@Override
public boolean removeIf(Predicate super E> filter) {
//非空检查
Objects.requireNonNull(filter);
int removeCount = 0;
//用于标记集合是哪个索引位置需要被移除
final BitSet removeSet = new BitSet(size);
final int expectedModCount = modCount;
final int size = this.size;
for (int i=0; modCount == expectedModCount && i < size; i++) {
@SuppressWarnings("unchecked")
final E element = (E) elementData[i];
//条件判断,移除数量递增
if (filter.test(element)) {
removeSet.set(i);
removeCount++;
}
}
//遍历时发生结构变更时抛出异常
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
// 移除操作 只有 removeCount > 0 才说明需要移除元素
final boolean anyToRemove = removeCount > 0;
if (anyToRemove) {
//集合移除指定元素后的大小
final int newSize = size - removeCount;
for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
//略过被标记为 true 的位置,直接跳到不需要移除元素的数组索引位
i = removeSet.nextClearBit(i);
//有效数据逐渐从尾部向头部聚集
elementData[j] = elementData[i];
}
for (int k=newSize; k < size; k++) {
elementData[k] = null; // 垃圾回收,引用置null
}
this.size = newSize;
//遍历时发生结构变更时抛出异常
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
return anyToRemove;
}
//将集合元素遍历传递给 operator,并将原始数据替换为 operator 的返回值
@Override
@SuppressWarnings("unchecked")
public void replaceAll(UnaryOperator operator) {
Objects.requireNonNull(operator);
final int expectedModCount = modCount;
final int size = this.size;
for (int i=0; modCount == expectedModCount && i < size; i++) {
//依次传递数组元素给 apply 方法,并将其返回值替换原始数据
elementData[i] = operator.apply((E) elementData[i]);
}
//遍历时发生结构变更时抛出异常
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
//将集合按照指定规则进行排序
@Override
@SuppressWarnings("unchecked")
public void sort(Comparator super E> c) {
final int expectedModCount = modCount;
Arrays.sort((E[]) elementData, 0, size, c);
//遍历时发生结构变更时抛出异常
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
}