- Task 01 第一章习题
1.1说明伯努利模型的极大似然估计以及贝叶斯估计中的统计学习方法三要素。伯努利模型是定义在取值为0与1的随机变量上的概率分布。假设观测到伯努利模型n次独立的数据生成结果,其中k次的结果为1,这时可以用极大似然估计或贝叶斯估计来估计结果为1的概率。回忆知识点:统计学习方法三要素为:模型+策略+算法模型:在监督学习过程中,模型就是所要学习的条件概率分布或决策函数。策略:统计学习要考虑按照什么样的准则选
- 吴恩达机器学习入门笔记(Week 1)
冒冒喵
吴恩达机器学习入门机器学习笔记人工智能
吴恩达机器学习Week1学习资源及工具机器学习分类专业术语(Terminology)线性回归模型(Linearregression)代价函数(costfunction)学习资源及工具1、课程资源:B站大学2、相关工具:Jupter&Github3、书籍资源:神经网络与深度学习(MichaelNielsen)、机器学习(周志华)、统计学习方法(李航)…机器学习分类1、监督学习(supervisedl
- 02 Deep learning神经网络的编程基础 逻辑回归--吴恩达
狂小虎
DeepLearning深度学习神经网络逻辑回归
逻辑回归逻辑回归是一种用于解决二分类任务(如预测是否是猫咪等)的统计学习方法。尽管名称中包含“回归”,但其本质是通过线性回归的变体输出概率值,并使用Sigmoid函数将线性结果映射到[0,1]区间。以猫咪预测为例假设单个样本/单张图片为(x\mathbf{x}x,y\mathbf{y}y),特征向量X=x\mathbf{x}x,则y^\hat{y}y^即为X的预测值,y^\hat{y}y^=P(y
- 统计学习方法(李航) 第五章 决策树
WangZiYi2003
机器学习学习方法决策树算法
笔记目录:统计学习方法(李航)第一章绪论统计学习方法(李航)第二章感知机统计学习方法(李航)第三章k近邻统计学习方法(李航)第四章贝叶斯统计学习方法(李航)第五章决策树第一节决策树介绍1.决策树的概念决策树是一种树形结构的分类或回归模型,通过一系列if-then规则对数据进行决策if-then规则:每个节点表示一个条件(如“年龄>30?”),根据条件判断进入不同的子节点互斥性:每个条件的结果(如“
- python:sklearn 主成分分析(PCA)
belldeep
pythonsklearnpythonsklearn机器学习PCA
参考书:《统计学习方法》第2版第16章主成分分析(PCA)示例编写test_pca_1.py如下#-*-coding:utf-8-*-"""主成分分析(PCA)"""importmatplotlib.pyplotaspltfromsklearn.datasetsimportload_irisfromsklearn.decompositionimportPCA#加载鸢尾花数据集iris=load_i
- 我的机器学习学习之路
花果山-马大帅
机器学习机器学习人工智能python算法scikit-learn
学习python的初衷•hi,今天给朋友们分享一下我是怎么从0基础开始学习机器学习的。•我是2023年9月开始下定决心要学python的,目的有两个,一是为了提升自己的技能和价值,二是将所学的知识应用到工作中去,提升工作效率。我的背景与书籍选择•我是上班族,2023年非全日制硕士研究生毕业。•我的导师是数学博士,在导师的推荐下买了周老师的《机器学习(西瓜书)》和李航老师的《统计学习方法》,这2本书
- 支持向量机 SVM 简要介绍
_夜空的繁星_
机器学习svm支持向量机拉格朗日对偶机器学习
那些我从来没有理解过的概念(1)下面是我在学习过程中遇到的对我很难理解的概念和我抄下来的笔记主要资料来源:《统计学习方法》,维基百科拉格朗日对偶问题是什么假设f(x),ci(x),hj(x)是定义在Rn上的连续可微函数,考虑以下最优化问题:$$\min_{x\inR^n}{f(x)}\c_i(x)\leq0,i=1,2,\dots,k\h_j(x)=0,j=1,2,\dots,l$$是一个凸优化问
- python 统计库_《统计学习方法》 Python 库
weixin_39756540
python统计库
新建GitHub仓库仓库名为slmethod,统计学习方法(StatisticalLearningMethod)的简写Public公开仓库勾选InitializethisrepositorywithaREADME.gitignore选择Python添加MITLicensenew下载代码到本地,使用ssh协议。
[email protected]:iOSDevLog/slmethod.git
- 《李航 统计学习方法》学习笔记——第五章决策树
eveiiii
统计学习决策树算法剪枝python机器学习
决策树5.1决策树模型与学习5.2特征选择5.2.1信息增益5.2.2信息增益比python代码实现例题:信息增益与信息增益比5.3决策树的生成5.3.1ID3算法(python实现)5.3.2C4.5生成算法(python实现)5.4决策树的剪枝5.5CART算法5.5.1CART生成5.5.2CART剪枝习题5.1(python实现)习题5.2(python实现)习题5.3习题5.4参考5.1
- 《李航 统计学习方法》学习笔记——第八章提升方法
eveiiii
统计学习python机器学习人工智能算法
提升方法8.1提升方法AdaBoost8.1.1提升方法的基本思路8.1.2AdaBoost算法8.1.3AdaBoost的例子(代码实现)8.2AdaBoost算法的训练误差分析定理8.1AdaBoost训练误差界定理8.2二分类问题AdaBoost训练误差界8.3AdaBoost算法的解释8.3.1前向分步算法8.3.2前向分步算法与AdaBoost8.4提升树8.4.1提升树模型8.4.2提
- 一切皆是映射:神经网络在图像识别中的应用案例
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
一切皆是映射:神经网络在图像识别中的应用案例关键词:神经网络、图像识别、深度学习、卷积神经网络、映射、模式识别1.背景介绍1.1问题的由来图像识别问题的研究源于人类对于智能机器的渴望。早在20世纪50年代,人工智能的先驱们就开始探索如何让计算机具备类似人类的视觉感知能力。从最初的简单模式匹配,到后来的统计学习方法,再到如今的深度学习,图像识别技术经历了几代演变。这一演变过程反映了人工智能技术的快速
- 【统计学习方法读书笔记】(四)朴素贝叶斯法
Y.G Bingo
统计学习方法人工智能统计学习概率概率论
终于到了贝叶斯估计这章了,贝叶斯估计在我心中一直是很重要的地位,不过发现书中只用了不到10页介绍这一章,深度内容后,发现贝叶斯估计的基础公式确实不多,但是由于正态分布在生活中的普遍性,贝叶斯估计才应用的非常多吧!默认输入变量用XXX表示,输出变量用YYY表示概率公式描述:P(X=x)P(X=x)P(X=x):表示当X=xX=xX=x时的概率P(X=x∣Y=ck)P(X=x|Y=c_k)P(X=x∣
- 【统计学习方法】感知机
jyyym
ml苦手机器学习
一、前言感知机是FrankRosenblatt在1957年就职于康奈尔航空实验室时所发明的一种人工神经网络。它可以被视为一种最简单的前馈神经网络,是一种二元线性分类器。Seemoredetailsinwikipdia感知机.本篇blog将从统计学习方法三要素即模型、策略、算法三个方面介绍感知机,并给出相应代码实现。二、模型假设输入空间是x∈Rnx\in{R^n}x∈Rn,输出空间是y∈{−1,+1
- 赠书 | 李航老师的蓝皮书
茗创科技
赠书活动统计学习方法“统计机器学习方法是实现智能化目标的最有效的手段,统计机器学习是各种智能性处理研究领域中的核心技术,并且在这些领域的发展及应用中起着决定性的作用。”作者简介李航,日本京都大学电气电子工程系毕业,日本东京大学计算机科学博士。北京大学、南京大学客座教授,IEEE会士,ACM杰出科学家,CCF高级会员。研究方向包括信息检索,自然语言处理,统计机器学习,及数据挖掘。曾出版过三部学术专著
- 统计学习方法(李航)--第二章 感知机(比较基础)
人間煙火Just
感知机是二分类的线性分类模型,属于判别模型,包括原始形式和对偶形式。(一)感知机模型公式为:f是输出,x是输入,w和b是参数,sign是符号函数(大于0为1,小于0为-1)几何解释:对于特征空间Rn中的一个超平面S,w是S的法向量,b是截距,将超平面空间划分为两个部分,完成2分类任务。(二)学习策略1.数据集的线性可分性:若存在wx+b的超平面可以将数据集完全分割,则称为线性可分。2.学习策略(以
- 统计学习方法笔记之决策树
Aengus_Sun
更多文章可以访问我的博客Aengus|Blog决策树的概念比较简单,可以将决策树看做一个if-then集合:如果“条件1”,那么...。决策树学习的损失函数通常是正则化后极大似然函数,学习的算法通常是一个递归的选择最优特征,并根据该特征对训练数据进行分割,使得对各个子数据集有一个最好的分类的过程。可以看出,决策树算法一般包含特征选择,决策树的生成与决策树的剪枝过程。特征选择信息增益熵和条件熵在了解
- 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第6章 逻辑斯谛回归与最大熵模型(2)6.2 最大熵模型
北方骑马的萝卜
机器学习笔记学习方法笔记python
文章目录6.2最大熵模型6.2.1最大熵原理6.2.3最大熵模型的学习6.2.4极大似然估计《统计学习方法:李航》笔记从原理到实现(基于python)--第3章k邻近邻法《统计学习方法:李航》笔记从原理到实现(基于python)--第1章统计学习方法概论《统计学习方法:李航》笔记从原理到实现(基于python)--第2章感知机《统计学习方法:李航》笔记从原理到实现(基于python)--第3章k邻
- 贝叶斯的缺点
人机与认知实验室
机器学习人工智能
贝叶斯方法是一种统计学习方法,通过利用贝叶斯定理来计算给定先验概率的情况下,后验概率的条件概率。虽然贝叶斯方法在许多领域中应用广泛且有效,但也存在一些缺点。以下是一些贝叶斯方法的缺点的例子:1、先验概率的选择贝叶斯方法依赖于先验概率的选择,先验概率的不准确性可能导致后验概率的不准确性。选择先验概率是非常困难的,特别是在没有明确领域知识或可靠数据支持的情况下。2、计算复杂度在贝叶斯方法中,计算后验概
- 机器学习知识体系总结
qq_36661243
机器学习算法
机器学习知识体系总结什么是机器学习?机器学习体系概括监督学习(SupervisedLearning)十种监督学习方法统计学习方法:模型+策略+学习方法模型策略学习算法无监督学习(UnsupervisedLearning)半监督学习参考所有的知识,无论过去,当下和未来,都可以利用某个单一,通用的学习算法中从数据中获取。–《终极算法》什么是机器学习?机器学习(MachineLearning,ML)是一
- 白铁时代 —— (监督学习)原理推导
人生简洁之道
2020年-面试笔记人工智能
来自李航《统计学习方法》文章目录-1指标相似度0概论1优化类1.1朴素贝叶斯1.2k近邻-kNN1.3线性判别分析二分类LDA多分类LDA流程LDA和PCA的区别和联系1.4逻辑回归模型&最大熵模型逻辑回归最大熵模型最优化1.5感知机&SVM感知机SVM线性可分SVM线性不可分SVM对偶优化问题&非线性SVM序列最小优化算法SMO1.7概率图模型EM算法EM算法的导出和流程应用举例:高斯混合模型(
- 最大熵阈值python_李航统计学习方法(六)----逻辑斯谛回归与最大熵模型
weixin_39669638
最大熵阈值python
本文希望通过《统计学习方法》第六章的学习,由表及里地系统学习最大熵模型。文中使用Python实现了逻辑斯谛回归模型的3种梯度下降最优化算法,并制作了可视化动画。针对最大熵,提供一份简明的GIS最优化算法实现,并注解了一个IIS最优化算法的Java实现。本文属于初学者的个人笔记,能力有限,无法对著作中的公式推导做进一步发挥,也无法保证自己的理解是完全正确的,特此说明,恳请指教逻辑斯谛回归模型逻辑斯谛
- 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第6章 逻辑斯谛回归与最大熵模型(1)6.1 逻辑斯谛回归模型
北方骑马的萝卜
机器学习笔记学习方法笔记python
文章目录第6章逻辑斯谛回归与最大熵模型6.1逻辑斯谛回归模型6.1.1逻辑斯谛分布6.1.2二项逻辑斯谛回归模型6.1.3模型参数估计6.1.4多项逻辑斯谛回归《统计学习方法:李航》笔记从原理到实现(基于python)--第3章k邻近邻法《统计学习方法:李航》笔记从原理到实现(基于python)--第1章统计学习方法概论《统计学习方法:李航》笔记从原理到实现(基于python)--第2章感知机《统
- 李航统计学习方法----决策树章节学习笔记以及python代码
詹sir的BLOG
大数据python决策树算法剪枝
目录1决策树模型2特征选择2.1数据引入2.2信息熵和信息增益3决策树生成3.1ID3算法3.2C4.5算法4决策树的剪枝5CART算法(classificationandregressiontree)5.1回归树算法5.2分类树的生成5.3CART剪枝6PYTHON代码实例决策树算法可以应用于分类问题与回归问题,李航的书中主要讲解的是分类树,构建决策树分为三个过程,分别是特征选择、决策树生成、决
- 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第5章 决策树(代码python实践)
北方骑马的萝卜
机器学习笔记学习方法笔记python
文章目录第5章决策树—python实践书上题目5.1利用ID3算法生成决策树,例5.3scikit-learn实例《统计学习方法:李航》笔记从原理到实现(基于python)--第5章决策树第5章决策树—python实践importnumpyasnpimportpandasaspdimportmatplotlib.pyplotasplt%matplotlibinlinefromsklearn.dat
- 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第4章 朴素贝叶斯法
北方骑马的萝卜
机器学习笔记学习方法笔记python
文章目录第4章朴素贝叶斯法4.1朴素贝叶斯法的学习与分类4.1.1基本方法4.1.2后验概率最大化的含义4.2朴素贝叶斯法的参数估计4.2.1极大似然估计4.2.2学习与算法4.2.3贝叶斯估计代码实践GaussianNB高斯朴素贝叶斯scikit-learn实例scikit-learn:伯努利模型和多项式模型《统计学习方法:李航》笔记从原理到实现(基于python)--第3章k邻近邻法《统计学习
- 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第1章 统计学习方法概论
北方骑马的萝卜
机器学习笔记学习方法笔记python机器学习
文章目录第1章统计学习方法概论1.1统计学习1.统计学习的特点2.统计学习的对象3.统计学习的目的4.统计学习的方法1.2.1基本概念1.2.2问题的形式化1.3统计学习三要素1.3.1模型1.3.2策略1.3.3算法1.4模型评估与模型选择1.4.1训练误差与测试误差1.4.2过拟合与模型选择1.5正则化与交叉验证1.5.1正则化1.5.2交叉验证1.6泛化能力1.6.1泛化误差1.6.2泛化误
- 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第 2章感知机
北方骑马的萝卜
机器学习笔记学习方法笔记python机器学习
文章目录第2章感知机2.1感知机模型2.2感知机学习策略2.2.1数据集的线性可分性2.2.2感知机学习策略2.3感知机学习算法2.3.1感知机学习算法的原始形式2.3.2算法的收敛性2.3.3感知机学习算法的对偶形式实践:二分类模型(iris数据集)数据集可视化:Perceptronscikit-learn实例《统计学习方法:李航》笔记从原理到实现(基于python)--第2章感知机《统计学习方
- 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第3章 k邻近邻法
北方骑马的萝卜
机器学习笔记学习方法笔记python
文章目录第3章k邻近邻法3.1k近邻算法3.2k近邻模型3.2.1模型3.2.2距离度量3.2.3k值的选择3.2.4分类决策规则3.3k近邻法的实现:kd树3.3.1构造kd树3.3.2搜索kd树算法实现课本例3.1iris数据集scikit-learn实例kd树:构造平衡kd树算法例3.2《统计学习方法:李航》笔记从原理到实现(基于python)--第3章k邻近邻法《统计学习方法:李航》笔记从
- 《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第5章 决策树
北方骑马的萝卜
机器学习笔记学习方法笔记python
文章目录第5章决策树5.1决策树模型与学习5.1.1决策树模型5.1.2决策树与if-then规则5.1.3决策树与条件概率分布5.1.4决策树学习5.2特征选择5.2.1特征选择问题5.2.2信息增益5.2.3信息增益比5.3.1ID3算法5.3.2C4.5的生成算法5.4决策树的剪枝5.5CART算法5.5.1CART生成5.5.2CART剪枝《统计学习方法:李航》笔记从原理到实现(基于pyt
- 自然语言处理发展(自然语言处理发展经历了哪些阶段)
2301_76571514
自然语言处理自然语言处理人工智能
一、历史发展自然语言处理的研究始于20世纪50年代初期,当时的主要任务是理解自然语言,并将其转换为机器语言。随着计算机硬件和软件的不断发展,NLP也得以逐步发展。在20世纪70年代,Chomsky提出了语法结构理论,使NLP的研究进一步深化。此后,人们开始尝试使用统计学习方法来解决NLP中的一些关键问题,例如机器翻译和文本分类等。到了2000年代,随着深度学习和神经网络技术的发展,NLP进一步获得
- xml解析
小猪猪08
xml
1、DOM解析的步奏
准备工作:
1.创建DocumentBuilderFactory的对象
2.创建DocumentBuilder对象
3.通过DocumentBuilder对象的parse(String fileName)方法解析xml文件
4.通过Document的getElem
- 每个开发人员都需要了解的一个SQL技巧
brotherlamp
linuxlinux视频linux教程linux自学linux资料
对于数据过滤而言CHECK约束已经算是相当不错了。然而它仍存在一些缺陷,比如说它们是应用到表上面的,但有的时候你可能希望指定一条约束,而它只在特定条件下才生效。
使用SQL标准的WITH CHECK OPTION子句就能完成这点,至少Oracle和SQL Server都实现了这个功能。下面是实现方式:
CREATE TABLE books (
id &
- Quartz——CronTrigger触发器
eksliang
quartzCronTrigger
转载请出自出处:http://eksliang.iteye.com/blog/2208295 一.概述
CronTrigger 能够提供比 SimpleTrigger 更有具体实际意义的调度方案,调度规则基于 Cron 表达式,CronTrigger 支持日历相关的重复时间间隔(比如每月第一个周一执行),而不是简单的周期时间间隔。 二.Cron表达式介绍 1)Cron表达式规则表
Quartz
- Informatica基础
18289753290
InformaticaMonitormanagerworkflowDesigner
1.
1)PowerCenter Designer:设计开发环境,定义源及目标数据结构;设计转换规则,生成ETL映射。
2)Workflow Manager:合理地实现复杂的ETL工作流,基于时间,事件的作业调度
3)Workflow Monitor:监控Workflow和Session运行情况,生成日志和报告
4)Repository Manager:
- linux下为程序创建启动和关闭的的sh文件,scrapyd为例
酷的飞上天空
scrapy
对于一些未提供service管理的程序 每次启动和关闭都要加上全部路径,想到可以做一个简单的启动和关闭控制的文件
下面以scrapy启动server为例,文件名为run.sh:
#端口号,根据此端口号确定PID
PORT=6800
#启动命令所在目录
HOME='/home/jmscra/scrapy/'
#查询出监听了PORT端口
- 人--自私与无私
永夜-极光
今天上毛概课,老师提出一个问题--人是自私的还是无私的,根源是什么?
从客观的角度来看,人有自私的行为,也有无私的
- Ubuntu安装NS-3 环境脚本
随便小屋
ubuntu
将附件下载下来之后解压,将解压后的文件ns3environment.sh复制到下载目录下(其实放在哪里都可以,就是为了和我下面的命令相统一)。输入命令:
sudo ./ns3environment.sh >>result
这样系统就自动安装ns3的环境,运行的结果在result文件中,如果提示
com
- 创业的简单感受
aijuans
创业的简单感受
2009年11月9日我进入a公司实习,2012年4月26日,我离开a公司,开始自己的创业之旅。
今天是2012年5月30日,我忽然很想谈谈自己创业一个月的感受。
当初离开边锋时,我就对自己说:“自己选择的路,就是跪着也要把他走完”,我也做好了心理准备,准备迎接一次次的困难。我这次走出来,不管成败
- 如何经营自己的独立人脉
aoyouzi
如何经营自己的独立人脉
独立人脉不是父母、亲戚的人脉,而是自己主动投入构造的人脉圈。“放长线,钓大鱼”,先行投入才能产生后续产出。 现在几乎做所有的事情都需要人脉。以银行柜员为例,需要拉储户,而其本质就是社会人脉,就是社交!很多人都说,人脉我不行,因为我爸不行、我妈不行、我姨不行、我舅不行……我谁谁谁都不行,怎么能建立人脉?我这里说的人脉,是你的独立人脉。 以一个普通的银行柜员
- JSP基础
百合不是茶
jsp注释隐式对象
1,JSP语句的声明
<%! 声明 %> 声明:这个就是提供java代码声明变量、方法等的场所。
表达式 <%= 表达式 %> 这个相当于赋值,可以在页面上显示表达式的结果,
程序代码段/小型指令 <% 程序代码片段 %>
2,JSP的注释
<!-- -->
- web.xml之session-config、mime-mapping
bijian1013
javaweb.xmlservletsession-configmime-mapping
session-config
1.定义:
<session-config>
<session-timeout>20</session-timeout>
</session-config>
2.作用:用于定义整个WEB站点session的有效期限,单位是分钟。
mime-mapping
1.定义:
<mime-m
- 互联网开放平台(1)
Bill_chen
互联网qq新浪微博百度腾讯
现在各互联网公司都推出了自己的开放平台供用户创造自己的应用,互联网的开放技术欣欣向荣,自己总结如下:
1.淘宝开放平台(TOP)
网址:http://open.taobao.com/
依赖淘宝强大的电子商务数据,将淘宝内部业务数据作为API开放出去,同时将外部ISV的应用引入进来。
目前TOP的三条主线:
TOP访问网站:open.taobao.com
ISV后台:my.open.ta
- 【MongoDB学习笔记九】MongoDB索引
bit1129
mongodb
索引
可以在任意列上建立索引
索引的构造和使用与传统关系型数据库几乎一样,适用于Oracle的索引优化技巧也适用于Mongodb
使用索引可以加快查询,但同时会降低修改,插入等的性能
内嵌文档照样可以建立使用索引
测试数据
var p1 = {
"name":"Jack",
"age&q
- JDBC常用API之外的总结
白糖_
jdbc
做JAVA的人玩JDBC肯定已经很熟练了,像DriverManager、Connection、ResultSet、Statement这些基本类大家肯定很常用啦,我不赘述那些诸如注册JDBC驱动、创建连接、获取数据集的API了,在这我介绍一些写框架时常用的API,大家共同学习吧。
ResultSetMetaData获取ResultSet对象的元数据信息
- apache VelocityEngine使用记录
bozch
VelocityEngine
VelocityEngine是一个模板引擎,能够基于模板生成指定的文件代码。
使用方法如下:
VelocityEngine engine = new VelocityEngine();// 定义模板引擎
Properties properties = new Properties();// 模板引擎属
- 编程之美-快速找出故障机器
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
public class TheLostID {
/*编程之美
假设一个机器仅存储一个标号为ID的记录,假设机器总量在10亿以下且ID是小于10亿的整数,假设每份数据保存两个备份,这样就有两个机器存储了同样的数据。
1.假设在某个时间得到一个数据文件ID的列表,是
- 关于Java中redirect与forward的区别
chenbowen00
javaservlet
在Servlet中两种实现:
forward方式:request.getRequestDispatcher(“/somePage.jsp”).forward(request, response);
redirect方式:response.sendRedirect(“/somePage.jsp”);
forward是服务器内部重定向,程序收到请求后重新定向到另一个程序,客户机并不知
- [信号与系统]人体最关键的两个信号节点
comsci
系统
如果把人体看做是一个带生物磁场的导体,那么这个导体有两个很重要的节点,第一个在头部,中医的名称叫做 百汇穴, 另外一个节点在腰部,中医的名称叫做 命门
如果要保护自己的脑部磁场不受到外界有害信号的攻击,最简单的
- oracle 存储过程执行权限
daizj
oracle存储过程权限执行者调用者
在数据库系统中存储过程是必不可少的利器,存储过程是预先编译好的为实现一个复杂功能的一段Sql语句集合。它的优点我就不多说了,说一下我碰到的问题吧。我在项目开发的过程中需要用存储过程来实现一个功能,其中涉及到判断一张表是否已经建立,没有建立就由存储过程来建立这张表。
CREATE OR REPLACE PROCEDURE TestProc
IS
fla
- 为mysql数据库建立索引
dengkane
mysql性能索引
前些时候,一位颇高级的程序员居然问我什么叫做索引,令我感到十分的惊奇,我想这绝不会是沧海一粟,因为有成千上万的开发者(可能大部分是使用MySQL的)都没有受过有关数据库的正规培训,尽管他们都为客户做过一些开发,但却对如何为数据库建立适当的索引所知较少,因此我起了写一篇相关文章的念头。 最普通的情况,是为出现在where子句的字段建一个索引。为方便讲述,我们先建立一个如下的表。
- 学习C语言常见误区 如何看懂一个程序 如何掌握一个程序以及几个小题目示例
dcj3sjt126com
c算法
如果看懂一个程序,分三步
1、流程
2、每个语句的功能
3、试数
如何学习一些小算法的程序
尝试自己去编程解决它,大部分人都自己无法解决
如果解决不了就看答案
关键是把答案看懂,这个是要花很大的精力,也是我们学习的重点
看懂之后尝试自己去修改程序,并且知道修改之后程序的不同输出结果的含义
照着答案去敲
调试错误
- centos6.3安装php5.4报错
dcj3sjt126com
centos6
报错内容如下:
Resolving Dependencies
--> Running transaction check
---> Package php54w.x86_64 0:5.4.38-1.w6 will be installed
--> Processing Dependency: php54w-common(x86-64) = 5.4.38-1.w6 for
- JSONP请求
flyer0126
jsonp
使用jsonp不能发起POST请求。
It is not possible to make a JSONP POST request.
JSONP works by creating a <script> tag that executes Javascript from a different domain; it is not pos
- Spring Security(03)——核心类简介
234390216
Authentication
核心类简介
目录
1.1 Authentication
1.2 SecurityContextHolder
1.3 AuthenticationManager和AuthenticationProvider
1.3.1 &nb
- 在CentOS上部署JAVA服务
java--hhf
javajdkcentosJava服务
本文将介绍如何在CentOS上运行Java Web服务,其中将包括如何搭建JAVA运行环境、如何开启端口号、如何使得服务在命令执行窗口关闭后依旧运行
第一步:卸载旧Linux自带的JDK
①查看本机JDK版本
java -version
结果如下
java version "1.6.0"
- oracle、sqlserver、mysql常用函数对比[to_char、to_number、to_date]
ldzyz007
oraclemysqlSQL Server
oracle &n
- 记Protocol Oriented Programming in Swift of WWDC 2015
ningandjin
protocolWWDC 2015Swift2.0
其实最先朋友让我就这个题目写篇文章的时候,我是拒绝的,因为觉得苹果就是在炒冷饭, 把已经流行了数十年的OOP中的“面向接口编程”还拿来讲,看完整个Session之后呢,虽然还是觉得在炒冷饭,但是毕竟还是加了蛋的,有些东西还是值得说说的。
通常谈到面向接口编程,其主要作用是把系统设计和具体实现分离开,让系统的每个部分都可以在不影响别的部分的情况下,改变自身的具体实现。接口的设计就反映了系统
- 搭建 CentOS 6 服务器(15) - Keepalived、HAProxy、LVS
rensanning
keepalived
(一)Keepalived
(1)安装
# cd /usr/local/src
# wget http://www.keepalived.org/software/keepalived-1.2.15.tar.gz
# tar zxvf keepalived-1.2.15.tar.gz
# cd keepalived-1.2.15
# ./configure
# make &a
- ORACLE数据库SCN和时间的互相转换
tomcat_oracle
oraclesql
SCN(System Change Number 简称 SCN)是当Oracle数据库更新后,由DBMS自动维护去累积递增的一个数字,可以理解成ORACLE数据库的时间戳,从ORACLE 10G开始,提供了函数可以实现SCN和时间进行相互转换;
用途:在进行数据库的还原和利用数据库的闪回功能时,进行SCN和时间的转换就变的非常必要了;
操作方法: 1、通过dbms_f
- Spring MVC 方法注解拦截器
xp9802
spring mvc
应用场景,在方法级别对本次调用进行鉴权,如api接口中有个用户唯一标示accessToken,对于有accessToken的每次请求可以在方法加一个拦截器,获得本次请求的用户,存放到request或者session域。
python中,之前在python flask中可以使用装饰器来对方法进行预处理,进行权限处理
先看一个实例,使用@access_required拦截:
?