知识点:多线程概述、创建线程-继承Thread类、-run和start特点、获取线程对象及名称、实现Runnable接口、多线程安全问题、多线程同步代码块、多线程同步函数、同步函数的锁是this、静态同步函数的锁是Class对象、多线程单例设计懒汉式、多线程死锁
进程:正在进行中的程序
*进程是指一个内存中运行的应用程序,每个进程都有自己独立的一块内存空间,一个进程中可以有多个线程。比如在Windows系统中,一个运行的xx.exe就是一个进程。
*Java程序的进程里有几个线程:主线程, 垃圾回收线程(后台线程)
线程:就是进程中的一个负责程序执行的控制单元(执行路径)一个进程可以多执行路径,成为多线程。
*线程是指进程中的一个执行任务(控制单元),一个进程中可以运行多个线程,多个线程可共享数据。
*一个进程中至少要有一个线程。为了提高效率,可以在一个进程中开启多个控制单元。 并发运行。如:多线程下载软件。
每一个线程都有自己运行的内容,这个内容成为多线程要执行的任务
多线程是为了同步完成多项任务,不是为了提供运行效率,通过提高资源使用效率来提高系统的效率.
多线程的利弊
*完成同时运行,但是通过程序运行的结果发现,虽然同时运行,但是每一次结果都不一致。
*因为多线程存在一个特性:随机性。
*造成的原因:CPU在瞬间不断切换去处理各个线程而导致的。 可以理解成多个线程在抢cpu资源
线程与进程的比较
*线程具有许多传统进程所具有的特征,故又称为轻型进程(Light—Weight Process)或进程元;而把传统的进程称为重型进程(Heavy—Weight Process),它相当于只有一个线程的任务。在引入了线程的操作系统中,通常一个进程都有若干个线程,至少需要一个线程。
*进程与线程的区别:
1.进程有独立的进程空间,进程中的数据存放空间(堆空间和栈空间)是独立的。
2.线程的堆空间是共享的,栈空间是独立的,线程消耗的资源也比进程小,相互之间可以影响的。
/*
进程:正在进行中的程序(直译).
线程:就是进程中一个负责程序执行的控制单元(执行路径)
一个进程中可以多执行路径,称之为多线程。
一个进程中至少要有一个线程。
开启多个线程是为了同时运行多部分代码。
每一个线程都有自己运行的内容。这个内容可以称为线程要执行的任务。
多线程好处:解决了多部分同时运行的问题。
多线程的弊端:线程太多回到效率的降低。
其实应用程序的执行都是cpu在做着快速的切换完成的。这个切换是随机的。
JVM启动时就启动了多个线程,至少有两个线程可以分析的出来。
1,执行main函数的线程,
该线程的任务代码都定义在main函数中。
2,负责垃圾回收的线程。
*/
1、继承Thread类
子类覆写父类中的run方法,将线程运行的代码存放在run中。
建立子类对象的同时线程也被创建。
通过调用start方法开启线程。
2、实现Runnable接口
子类覆盖接口中的run方法。
通过Thread类创建线程,并将实现了Runnable接口的子类对象作为参数传递给Thread类的构造函数。
Thread类对象调用start方法开启线程。
可使用匿名内部类来写
Thread类中run()和start()方法的区别如下:
run()方法:在本线程内调用该Runnable对象的run()方法,可以重复多次调用;
start()方法:启动一个线程,调用该Runnable对象的run()方法,不能多次启动一个线程;
获取线程对象及名称
Thread.currentThread().getName()
/*
如何创建一个线程呢?
创建线程方式一:继承Thread类。
步骤:
1,定义一个类继承Thread类。
2,覆盖Thread类中的run方法。
3,直接创建Thread的子类对象创建线程。
4,调用start方法开启线程并调用线程的任务run方法执行。
可以通过Thread的getName获取线程的名称 Thread-编号(从0开始)
主线程的名字就是main。
*/
class Demo extends Thread
{
private String name;
Demo(String name)
{
super(name);
//this.name = name;
}
public void run()
{
for(int x=0; x<10; x++)
{
//for(int y=-9999999; y<999999999; y++){}
System.out.println(name+"....x="+x+".....name="+Thread.currentThread().getName());
}
}
}
class ThreadDemo2
{
public static void main(String[] args)
{
/*
创建线程的目的是为了开启一条执行路径,去运行指定的代码和其他代码实现同时运行。
而运行的指定代码就是这个执行路径的任务。
jvm创建的主线程的任务都定义在了主函数中。
而自定义的线程它的任务在哪儿呢?
Thread类用于描述线程,线程是需要任务的。所以Thread类也对任务的描述。
这个任务就通过Thread类中的run方法来体现。也就是说,run方法就是封装自定义线程运行任务的函数。
run方法中定义就是线程要运行的任务代码。
开启线程是为了运行指定代码,所以只有继承Thread类,并复写run方法。
将运行的代码定义在run方法中即可。
*/
//
// Thread t1 = new Thread();
Demo d1 = new Demo("旺财");
Demo d2 = new Demo("xiaoqiang");
d1.start();//开启线程,调用run方法。
d2.start();
System.out.println("over...."+Thread.currentThread().getName());
}
}
//调用run和调用start有什么区别?
class Demo extends Thread
{
private String name;
Demo(String name)
{
// super(name);
this.name = name;
}
public void run()
{
int[] arr = new int[3];
System.out.println(arr[3]);
for(int x=0; x<10; x++)
{
System.out.println("....x="+x+".....name="+Thread.currentThread().getName());
}
}
}
class ThreadDemo3
{
public static void main(String[] args)
{
Demo d1 = new Demo("旺财");
Demo d2 = new Demo("xiaoqiang");
d1.start();
d2.start();
System.out.println(4/0);//throw new ArithmeticException();
for(int x=0; x<20; x++)
{
System.out.println(x+"...."+Thread.currentThread().getName());
}
}
}
多线程运行图示
创建线程的第二种方式:实现Runnable接口。
为什么要覆盖run方法呢?
Thread类用于描述线程。该类就定义了一个功能,用于存储线程要运行的代码。该存储功能就是run方法.
也就是说Thread类中的run方法,用于存储线程要运行的代码。
/*
创建线程的第一种方式:继承Thread类。
创建线程的第二种方式:实现Runnable接口。
1,定义类实现Runnable接口。
2,覆盖接口中的run方法,将线程的任务代码封装到run方法中。
3,通过Thread类创建线程对象,并将Runnable接口的子类对象作为Thread类的构造函数的参数进行传递。
为什么?因为线程的任务都封装在Runnable接口子类对象的run方法中。
所以要在线程对象创建时就必须明确要运行的任务。
4,调用线程对象的start方法开启线程。
实现Runnable接口的好处:
1,将线程的任务从线程的子类中分离出来,进行了单独的封装。
按照面向对象的思想将任务的封装成对象。
2,避免了java单继承的局限性。
所以,创建线程的第二种方式较为常用。
*/
class Demo implements Runnable//extends Fu //准备扩展Demo类的功能,让其中的内容可以作为线程的任务执行。
//通过接口的形式完成。
{
public void run()
{
show();
}
public void show()
{
for(int x=0; x<20; x++)
{
System.out.println(Thread.currentThread().getName()+"....."+x);
}
}
}
class ThreadDemo
{
public static void main(String[] args)
{
Demo d = new Demo();
Thread t1 = new Thread(d);
Thread t2 = new Thread(d);
t1.start();
t2.start();
// Demo d1 = new Demo();
// Demo d2 = new Demo();
// d1.start();
// d2.start();
}
}
多线程安全问题
*导致安全问题的出现的原因:
多个线程访问出现延迟。
线程随机性。
注:线程安全问题在理想状态下,不容易出现,但一旦出现对软件的影响是非常大的。
我们可以通过Thread.sleep(longtime)方法来简单模拟延迟情况。
总结:
当多条语句在操作同一个线程共享数据时,一个线程对多条语句只执行了一部分,还没有执行完,另一个线程参与进来执行。导致共享数据的错误。
解决办法:
对多条操作共享数据的语句,只能让一个线程都执行完。在执行过程中,其他线程不可以参与执行。
多线程安全问题的解决方法
*三种方法:
同步代码块:
格式:
synchronized(obj)
{
//obj表示同步监视器,是同一个同步对象
/**.....
TODOSOMETHING
*/
}
同步方法:
格式:
在方法上加上synchronized修饰符即可。(一般不直接在run方法上加!)
synchronized 返回值类型方法名(参数列表)
{
/**.....
TODO SOMETHING
*/
}
同步方法的同步监听器其实的是this
静态方法的同步
*static不能和 this连用
*静态方法的默认同步锁是当前方法所在类的 .class 对象*静态的同步函数使用的锁是 该函数所属字节码文件对象
*可以用 getClass方法获取,也可以用当前 类名.class 表示。
同步锁:
jkd1.5后的另一种同步机制:
通过显示定义同步锁对象来实现同步,这种机制,同步锁应该使用Lock对象充当。
在实现线程安全控制中,通常使用ReentrantLock(可重入锁)。使用该对象可以显示地加锁和解锁。
具有与使用synchronized 方法和语句所访问的隐式监视器锁相同的一些基本行为和语义,但功能更强大。
public class X {
privatefinal ReentrantLock lock = new ReentrantLock();
//定义需要保证线程安全的方法
publicvoid m(){
//加锁
lock.lock();
try{
//...method body
}finally{
//在finally释放锁
lock.unlock();
}
}
}
Ticket卖票示例
/*
需求:卖票。
*/
/*
线程安全问题产生的原因:
1,多个线程在操作共享的数据。
2,操作共享数据的线程代码有多条。
当一个线程在执行操作共享数据的多条代码过程中,其他线程参与了运算。
就会导致线程安全问题的产生。
解决思路;
就是将多条操作共享数据的线程代码封装起来,当有线程在执行这些代码的时候,
其他线程时不可以参与运算的。
必须要当前线程把这些代码都执行完毕后,其他线程才可以参与运算。
在java中,用同步代码块就可以解决这个问题。
同步代码块的格式:
synchronized(对象)
{
需要被同步的代码 ;
}
同步的好处:解决了线程的安全问题。
同步的弊端:相对降低了效率,因为同步外的线程的都会判断同步锁。
同步的前提:同步中必须有多个线程并使用同一个锁。
class Ticket implements Runnable
{
private static int num = 100;
// Object obj = new Object();
boolean flag = true;
public void run()
{
// System.out.println("this:"+this.getClass());
if(flag)
while(true)
{
synchronized(Ticket.class)//(this.getClass())
{
if(num>0)
{
try{Thread.sleep(10);}catch (InterruptedException e){}
System.out.println(Thread.currentThread().getName()+".....obj...."+num--);
}
}
}
else
while(true)
this.show();
}
public static synchronized void show()
{
if(num>0)
{
try{Thread.sleep(10);}catch (InterruptedException e){}
System.out.println(Thread.currentThread().getName()+".....function...."+num--);
}
}
}
class StaticSynFunctionLockDemo
{
public static void main(String[] args)
{
Ticket t = new Ticket();
// Class clazz = t.getClass();
//
// Class clazz = Ticket.class;
// System.out.println("t:"+t.getClass());
Thread t1 = new Thread(t);
Thread t2 = new Thread(t);
t1.start();
try{Thread.sleep(10);}catch(InterruptedException e){}
t.flag = false;
t2.start();
}
}
/*
需求:储户,两个,每个都到银行存钱每次存100,,共存三次。
*/
class Bank
{
private int sum;
// private Object obj = new Object();
public synchronized void add(int num)//同步函数
{
// synchronized(obj)
// {
sum = sum + num;
// -->
try{Thread.sleep(10);}catch(InterruptedException e){}
System.out.println("sum="+sum);
// }
}
}
class Cus implements Runnable
{
private Bank b = new Bank();
public void run()
{
for(int x=0; x<3; x++)
{
b.add(100);
}
}
}
class BankDemo
{
public static void main(String[] args)
{
Cus c = new Cus();
Thread t1 = new Thread(c);
Thread t2 = new Thread(c);
t1.start();
t2.start();
}
}
/*
多线程下的单例
*/
//饿汉式
class Single
{
private static final Single s = new Single();
private Single(){}
public static Single getInstance()
{
return s;
}
}
//懒汉式
加入同步为了解决多线程安全问题。
加入双重判断是为了解决效率问题。
class Single
{
private static Single s = null;
private Single(){}
public static Single getInstance()
{
if(s==null)
{
synchronized(Single.class)
{
if(s==null)
// -->0 -->1
s = new Single();
}
}
return s;
}
}
class SingleDemo
{
public static void main(String[] args)
{
System.out.println("Hello World!");
}
}
/*
死锁:常见情景之一:同步的嵌套。
*/
class Ticket implements Runnable
{
private int num = 100;
Object obj = new Object();
boolean flag = true;
public void run()
{
if(flag)
while(true)
{
synchronized(obj)
{
show();
}
}
else
while(true)
this.show();
}
public synchronized void show()
{
synchronized(obj)
{
if(num>0)
{
try{Thread.sleep(10);}catch (InterruptedException e){}
System.out.println(Thread.currentThread().getName()+".....sale...."+num--);
}
}
}
}
class DeadLockDemo
{
public static void main(String[] args)
{
Ticket t = new Ticket();
// System.out.println("t:"+t);
Thread t1 = new Thread(t);
Thread t2 = new Thread(t);
t1.start();
try{Thread.sleep(10);}catch(InterruptedException e){}
t.flag = false;
t2.start();
}
}
死锁示例2
class Test implements Runnable
{
private boolean flag;
Test(boolean flag)
{
this.flag = flag;
}
public void run()
{
if(flag)
{
while(true)
synchronized(MyLock.locka)
{
System.out.println(Thread.currentThread().getName()+"..if locka....");
synchronized(MyLock.lockb) {
System.out.println(Thread.currentThread().getName()+"..if lockb....");
}
}
}
else
{
while(true)
synchronized(MyLock.lockb)
{
System.out.println(Thread.currentThread().getName()+"..else lockb....");
synchronized(MyLock.locka)
{
System.out.println(Thread.currentThread().getName()+"..else locka....");
}
}
}
}
}
class MyLock
{
public static final Object locka = new Object();
public static final Object lockb = new Object();
}
class DeadLockTest
{
public static void main(String[] args)
{
Test a = new Test(true);
Test b = new Test(false);
Thread t1 = new Thread(a);
Thread t2 = new Thread(b);
t1.start();
t2.start();
}
}