TensorFlow之MNIST 分类以及Dropout的使用

一、简单的一层神经网络

import tensorflow as tf
#下载MNIST数据集(28*28,输入维度为784)
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

#构建简单的一层神经网络,包括常见参数weights、biases和activation_function
#首先定义添加神经层的函数def add_layer(),它有四个参数:输入值、输入的大小、输出的大小和激励函数
def add_layer(inputs,in_size,out_size,activation_function = None): 
#定义weights和biases,weight为随机变量(variable)
    Weights = tf.Variable(tf.random_normal([in_size,out_size]))#矩阵大小为in_size*out_size
    biases = tf.Variable(tf.zeros([1,out_size])+0.1)#biases不为0,加上任意一个小数值
#定义Wx_plus_b, 即神经网络未激活的值
    Wx_plus_b = tf.matmul(inputs,Weights) + biases
    if activation_function is None:
        outputs = Wx_plus_b
    else:
        outputs = activation_function(Wx_plus_b)
    return outputs

 

#定义一个计算准确率的函数
def compute_accuracy(v_xs, v_ys):
    global prediction
    y_pre = sess.run(prediction, feed_dict={xs: v_xs})
    correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys})
    return result



# 定义placeholder存放数据
xs = tf.placeholder(tf.float32, [None, 784])
ys = tf.placeholder(tf.float32, [None, 10])



#用add_layer函数搭建一个最简单的训练网络结构,只有输入层和输出层
prediction = add_layer(xs, 784, 10, activation_function=tf.nn.softmax)



#损失函数(cross_entropy)和优化方法
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),
                     reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)



#session会话控制
sess = tf.Session()
sess.run(tf.global_variables_initializer())
#训练1000次,每训练50次输出测试数据的训练精度
for i in range(1000):
    #开始训练,训练集中每次取100个数据(batch_xs, batch_ys)
    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys})#placeholder和feed_dict同时出现
    if i%50 == 0:
        print(compute_accuracy( mnist.test.images, mnist.test.labels))

结果为:

TensorFlow之MNIST 分类以及Dropout的使用_第1张图片

二、Dropout的使用

1.Dropout指部分神经元的激活值以一定的概率p暂停工作,在这次训练过程中不更新权值,但它的权值仍保留。

2. tf.nn.dropout

tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None,name=None)

keep_prob为保留概率,即我们要保留的结果所占比例

它作为一个placeholder,在run时传入,一般用于全连接层。

下面在前面的代码的基础上加上dropout,需要改动的地方如下

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

在def layer时增加一行 Wx_plus_b = tf.nn.dropout(Wx_plus_b, keep_prob)

其余不变

def add_layer(inputs,in_size,out_size,activation_function = None): 
    Weights = tf.Variable(tf.random_normal([in_size,out_size]))
    biases = tf.Variable(tf.zeros([1,out_size])+0.1)
    Wx_plus_b = tf.matmul(inputs,Weights) + biases
#这里增加一行dropout
    Wx_plus_b = tf.nn.dropout(Wx_plus_b, keep_prob)
    if activation_function is None:
        outputs = Wx_plus_b
    else:
        outputs = activation_function(Wx_plus_b)
    return outputs

注意:因为keep_prob作为一个placeholder,所以在feed_dict中传入!

keep_prob: 1(保留全部神经元) keep_prob: 0.5(保留50%神经元)

dropout仅在train中使用,在验证和test中keep_prob为1

#定义一个计算准确率的函数
def compute_accuracy(v_xs, v_ys):
    global prediction
    #keep_prob为1
    y_pre = sess.run(prediction, feed_dict={xs: v_xs,keep_prob: 1})
    correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys,keep_prob: 1})
    return result

keep_prob作为一个placeholder,在run时传入

增加一行:keep_prob = tf.placeholder(tf.float32)

#keep_prob作为一个placeholder,在run时传入
keep_prob = tf.placeholder(tf.float32)
# 定义placeholder存放数据
xs = tf.placeholder(tf.float32, [None, 784])
ys = tf.placeholder(tf.float32, [None, 10])


#用add_layer函数搭建一个简单的训练网络结构
layer1 = add_layer(xs, 784, 50, activation_function=tf.nn.tanh)
prediction = add_layer(layer1, 50, 10, activation_function=tf.nn.softmax)


#损失函数(cross_entropy)和优化方法
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),
                     reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

在run时传入keep_prob

#session会话控制
sess = tf.Session()
sess.run(tf.global_variables_initializer())
#训练1000次,每训练50次输出测试数据的训练精度
for i in range(1000):
    #开始训练,训练集中每次取100个数据(batch_xs, batch_ys)
    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5})#placeholder和feed_dict同时出现
    if i%50 == 0:
        print(compute_accuracy( mnist.test.images, mnist.test.labels))

结果:(变差了,我只是随便试一试)

TensorFlow之MNIST 分类以及Dropout的使用_第2张图片

你可能感兴趣的:(python学习,Tensorflow学习,深度学习)