- 【机器学习算法】XGBoost原理
一、基本内容基本内容:GBDT的基础上,在损失函数上加入树模型复杂度的正则项与GBDT一样,也是使用新的弱学习器拟合残差(当前模型负梯度,残差方向)GBDT损失函数Loss=∑i=1NL(yi,yit)Loss=\sum_{i=1}^{N}L(y_i,y_i^{t})Loss=i=1∑NL(yi,yit)XGboost损失函数Loss=∑i=1SL(yi,yit)+∑j=1NΩ(fj))Loss=
- 大语言模型(LLM)量化基础知识(一)
-派神-
RAGNLPChatGPT语言模型人工智能自然语言处理
承接各类AI相关应用开发项目(包括但不限于大模型微调、RAG、AI智能体、NLP、机器学习算法、运筹优化算法、数据分析EDA等)!!!有意愿请私信!!!随着大型语言模型(LLM)的参数数量的增长,与其支持硬件(加速器内存)增长速度之间的差距越来越大,如下图所示:上图显示,从2017年到2022年,语言模型的大小显著增加:2017年:Transformer模型(0.05B参数)2018年:GPT(0
- ICBDDM2025:大数据与数字化管理前沿峰会
鸭鸭鸭进京赶烤
学术会议大数据图像处理计算机视觉AI编程人工智能机器人考研
在选择大学专业时,可以先从自身兴趣、能力和职业规划出发,初步确定几个感兴趣的领域。然后结合外部环境因素,如专业前景、教育资源和就业情况等,对这些专业进行深入的分析和比较。大数据专业:是一个热门且前沿的学科领域,它涉及到数据的收集、存储、处理、分析和应用等多个方面。课程设置基础课程数学基础:高等数学、线性代数、概率论与数理统计等。这些课程为大数据分析提供了必要的数学工具,例如线性代数在机器学习算法中
- 【PyCharm 使用技巧】PyCharm 基本功能详解 || 【Jupyter Notebook】如何进入其它盘,如D盘?H盘?|| 【机器学习】聚类算法详解及其应用 || 道路交通流量模拟预测
追光者♂
Python从入门到人工智能工具技巧解决办法百题千解计划(项目实战案例)PyCharm使用技巧Jupyter如何进入其它盘聚类算法练习PyCharm详解时空交通流预测模拟
作者主页:追光者♂个人简介:在读计算机专业硕士研究生、CSDN-人工智能领域新星创作者、2022年CSDN博客之星人工智能领域TOP4、阿里云社区专家博主【无限进步,一起追光!】欢迎点赞收藏⭐留言本篇的目录一,是请看目录四——PyCharm基础设置回顾的续篇,继续记录讲解PyCharm的基本功能。目录二回顾了在使用Jupyter时的问题。目录三练习了机器学习算法中的聚类算法。目录一、再次了解PyC
- XGBoost算法原理及Python实现
法号清水
算法python开发语言
一、概述 XGBoost是一种基于梯度提升框架的机器学习算法,它通过迭代地训练一系列决策树来构建模型。核心思想是通过不断地在已有模型的基础上,拟合负梯度方向的残差(真实值与预测值的差)来构建新的弱学习器,达到逐步优化模型的目的。 XGBoost在构建决策树时,利用了二阶导数信息。在损失函数的优化过程中,不仅考虑了一阶导数(梯度),还引入了二阶导数(海森矩阵),这使得算法能够更精确地找到损失函数
- GBDT:梯度提升决策树——集成学习中的预测利器
大千AI助手
人工智能Python#OTHER决策树集成学习算法GBDT梯度提升人工智能机器学习
核心定位:一种通过串行集成弱学习器(决策树)、以梯度下降方式逐步逼近目标函数的机器学习算法,在结构化数据预测任务中表现出色。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、GBDT是什么?全称:GradientBoostingDecisionTree(梯度提升决策树)本质:Boosting集成学
- 机器学习算法-逻辑回归模型在交通领域的应用
是一个Bug
机器学习算法逻辑回归
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档逻辑回归模型在交通领域的应用:车流数量和平均速度之间的关系前言结果分析代码分析逻辑回归可视化:交通拥堵预测的动态建模过程一、交通数据生成与预处理二、逻辑回归核心算法实现三、动态可视化:决策边界的演变过程四、特征标准化与模型评估五、实验结果与模型解读六、拓展思考:逻辑回归的局限性结语:从代码到交通智能前言紧接上文的逻辑回归原理分析讲一讲
- LeRobot: 让机械臂接入大模型
小众AI
AI开源人工智能AI编程
HuggingFace推出的开源项目LeRobot引发了业界广泛关注。这一项目通过整合最先进的机器学习算法和便捷的开发工具链,为开发者提供了一个高效、易用的机器人AI开发平台,堪称机器人领域的“Transformer时刻”。LeRobot旨在为PyTorch中的真实机器人技术提供模型、数据集和工具。目标是降低机器人技术的准入门槛,以便每个人都可以从共享数据集和预训练模型中受益。LeRobot包含最
- AI智能时代SEO优化,AISEO-人工智能搜索引擎优化
weixin_ggwwsscc
人工智能搜索引擎deepseekAIseo
AI驱动的关键词精准匹配与语义理解传统的关键词排名规则主要依赖于关键词的字面匹配,即网站内容中出现的关键词与用户搜索词完全一致或高度相似时,才有可能获得较好的排名。然而,随着AI技术在搜索引擎中的广泛应用,这一局面正在发生深刻改变。如今的搜索引擎借助自然语言处理(NLP)和机器学习算法,能够深入理解用户搜索词背后的语义和意图,实现更精准的内容匹配。AI智能时代SEO优化,AISEO-人工智能搜索引
- 机器学习15-XGBoost
吹风看太阳
机器学习机器人人工智能
XGBOOST学习笔记一、引言在机器学习的集成学习算法中,XGBoost(eXtremeGradientBoosting)凭借其高效性、可扩展性和卓越的性能,成为数据科学竞赛和工业界应用的热门选择。XGBoost本质上是一种基于梯度提升框架(GradientBoostingFramework)的机器学习算法,它通过不断拟合残差来构建多个弱学习器(通常是决策树),并将这些弱学习器进行累加,从而形成一
- 机器学习算法实战系列:异常检测全攻略——从统计方法到深度学习的异常发现技术
全息架构师
AI行业应用实战先锋机器学习算法深度学习
机器学习算法实战系列:异常检测全攻略——从统计方法到深度学习的异常发现技术引言“数据中的异常往往蕴含着最有价值的信息!从金融欺诈检测到工业设备故障预警,从网络安全到医疗诊断,异常检测技术正在守护着各个领域的安全底线。”异常检测是机器学习中极具挑战性又极具价值的领域,它旨在识别数据中与大多数实例显著不同的异常模式。本文将系统讲解异常检测的核心算法,从传统的统计方法到前沿的深度学习技术,通过金融反欺诈
- 【C语言练习】100. 使用C语言实现简单的自然语言理解算法
视睿
从零开始学习机器人c语言算法开发语言排序算法
100.使用C语言实现简单的自然语言理解算法100.使用C语言实现简单的自然语言理解算法关键词匹配算法简介示例代码:简单的关键词匹配算法代码说明示例运行扩展功能其他方法基于规则的方法统计机器学习方法C语言中统计机器学习方法概述常见统计机器学习算法的C实现贝叶斯定理基础算法核心思想常见变体实现示例(Python)优缺点优化库与工具性能与注意事项有限状态自动机(FSA)深度学习接口调用混合方法100.
- AI如何改变IT行业
保持学习ing
人工智能
AI对IT行业的变革AI技术正在深刻影响IT行业的各个方面,从自动化运维到软件开发,再到数据分析和安全防护。以下是AI改变IT行业的主要方式:自动化运维(AIOps)AI驱动的运维工具可以实时监控系统性能,预测潜在故障并自动修复。机器学习算法分析日志数据,识别异常模式,减少人工干预。例如,AI可以预测服务器负载峰值,提前分配资源避免宕机。智能软件开发AI辅助编程工具如GitHubCopilot基于
- 机器学习算法_聚类KMeans算法
TY-2025
机器学习机器学习算法聚类
一、聚类算法分析1.概念概念:根据样本之间的相似性,将样本划分到不同的类别中;不同的相似度的计算方法,会得到不同的聚类结果,常见的相似度计算方法有欧氏距离法(无监督算法)聚类算法的目的是在没有先验知识的情况下,自动发现数据集中的内在结构和模式2.聚类算法分类(1)根据聚类颗粒度分类个数比较多的,细聚类;个数比较多的,粗聚类(2)根据实现方法分类K-means:按照质心分类层次聚类:对数据进行逐层划
- 图像处理与机器学习项目:特征提取、PCA与分类器评估
pk_xz123456
深度学习仿真模型算法图像处理机器学习人工智能
图像处理与机器学习项目:特征提取、PCA与分类器评估项目概述本项目将完成一个完整的图像处理与机器学习流程,包括数据探索、特征提取、主成分分析(PCA)、分类器实现和评估五个关键步骤。我们将使用Python的OpenCV、scikit-learn和scikit-image库来处理图像数据并实现机器学习算法。importnumpyasnpimportmatplotlib.pyplotaspltimpo
- 核方法、核技巧、核函数、核矩阵
第六五签
数学模型矩阵线性代数
核方法(KernelMethods)和核技巧(KernelTrick)是机器学习中处理非线性问题的强大理论框架和实践工具。核心目标:征服非线性许多机器学习算法(如感知机、支持向量机SVM、主成分分析PCA)本质上是寻找线性模式或线性决策边界(直线/平面/超平面)。然而,现实世界的数据往往是线性不可分的,这意味着在原始特征空间中,无法用一条直线(或超平面)完美地将不同类别的数据点分开,或者无法用线性
- 机器学习之集成学习算法
文柏AI共享
机器学习集成学习算法
集成学习算法一概述二Bagging方法2.1思想2.2代表算法2.3API三Boosting方法3.1AdaBoost3.1.1思想3.1.2API3.2GBDT3.2.1思想3.2.2API3.3XGBoost3.3.1思想3.3.2API机器学习算法很多,今天和大家聊一个很强悍的算法-集成学习算法,基本上是处理复杂问题的首选.话不多说,直奔主题.一概述集成学习(EnsembleLearning
- 机器学习算法——朴素贝叶斯和特征降维
TY-2025
机器学习机器学习算法人工智能
一、常见概率计算朴素贝叶斯算法是利用概率值进行分类的一种机器学习算法概率:一种事情发生的可能性,取值在[0,1]之间条件概率:表示事件A在另外一个事件B已经发生的条件下的发生概率P(A∣B)P(A|B)P(A∣B)联合概率:表示多个条件同时成立的概率P(AB)=P(A)∗P(B∣A)=P(B)∗P(A∣B)P(AB)=P(A)*P(B|A)=P(B)*P(A|B)P(AB)=P(A)∗P(B∣A)
- ubuntu20.04安装python_Ubuntu 20.04下安装部署最新的Python 3.9
weixin_39652646
原标题:Ubuntu20.04下安装部署最新的Python3.9来自:Linux迷链接:https://www.linuxmi.com/ubuntu-20-04-python-3-9.htmlPython是世界上最流行的编程语言之一。它是一种通用语言,用于构建各种各样的应用程序,从简单的脚本到复杂的机器学习算法。由于其简单且易于学习的语法,Python是初学者和有经验的开发人员的热门选择。Pyth
- 机器学习算法种类繁多以下是主要算法的详细描述、使用场景、经典案例、开源框架,以及学习和应用到实际场景的建议
zhxup606
数据结构与算法.netcore
机器学习算法种类繁多,根据任务类型主要分为监督学习、无监督学习、半监督学习和强化学习四大类。以下是对主要算法的详细描述、使用场景、经典案例、开源框架,以及学习和应用到实际场景的建议。一、机器学习算法分类及详细描述1.监督学习(SupervisedLearning)监督学习使用带标签的数据(输入和输出已知)进行训练,目标是学习输入到输出的映射函数。1.1线性回归(LinearRegression)描
- 机器学习KNN算法全解析:从原理到实战
AI妈妈手把手
机器学习算法人工智能pythonKNN
大家好!今天我们来聊聊机器学习中的"懒人算法"——KNN(K-NearestNeighbors,K近邻)算法。这个算法就像个"墙头草",它不学习模型参数,而是直接根据邻居的"投票"来做决策,是不是很有趣?让我们一起来揭开它的神秘面纱吧!一、算法简介:近朱者赤,近墨者黑KNN(K-NearestNeighbors,K最近邻)是最直观的机器学习算法之一,核心思想就是“物以类聚”:一个样本的类别由其最近
- 机器学习算法实战系列:决策树与随机森林全攻略
全息架构师
AI行业应用实战先锋Python实战项目大揭秘机器学习算法决策树
机器学习算法实战系列:决策树与随机森林全攻略引言“想知道Kaggle竞赛冠军团队的秘密武器吗?决策树和随机森林算法在80%的数据科学项目中都会用到!”决策树和随机森林是机器学习中最强大、最实用的算法之一。它们不仅直观易懂,而且在处理结构化数据时往往能取得惊人的效果。本文将带你从决策树的数学原理出发,逐步深入到随机森林的工业级应用,最后通过多个实战案例巩固所学知识。准备好迎接这场机器学习的视觉盛宴了
- 使用PyGAD训练Keras模型:从入门到实践
t0_54program
大数据与人工智能keras人工智能深度学习个人开发
在机器学习领域,如何高效地训练模型是一个关键问题。PyGAD作为一个开源的Python库,为我们提供了利用遗传算法来训练机器学习算法的有力工具,特别是在训练Keras模型方面,展现出独特的优势。一、PyGAD库简介PyGAD允许开发者构建遗传算法,并用于训练各类机器学习算法。它提供了丰富的参数,能针对不同类型的问题定制遗传算法。比如在解决一些复杂的优化问题时,我们可以通过调整这些参数,使遗传算法更
- 使用MATLAB和Simulink来设计并仿真一个智能家居基于机器视觉的安全监控系统
amy_mhd
matlab智能家居开发语言
目录一、准备工作二、步骤详解第一步:创建Simulink模型第二步:构建图像采集模块第三步:实现图像预处理第四步:设计背景建模与差分第五步:实现特征提取与行为识别第六步:设计响应机制第七步:搭建用户界面(可选)第八步:运行仿真并分析结果注意事项智能家居中基于机器视觉的安全监控系统通过摄像头捕捉图像,并利用图像处理和机器学习算法来分析这些图像,以实现诸如入侵检测、异常行为识别等功能。这种系统可以极大
- 【动手学机器学习】第三章模式识别与机器学习经典算法——k 近邻算法
小洛~·~
算法机器学习近邻算法python人工智能
前言本章先来讲解k近邻算法——最简单的机器学习算法,从中展开机器学习的一些基本概念和思想。或许有的读者会认为机器学习非常困难,需要庞大的模型、复杂的网络,但事实并非如此。相当多的机器学习算法都非常简单、直观,也不涉及神经网络。本章就将介绍一个最基本的分类和回归算法:k近邻(k-nearestneighbor,KNN)算法。KNN是最简单也是最重要的机器学习算法之一,它的思想可以用一句话来概括:“相
- 机器学习算法-k-means
不会敲代码的灵长类
机器学习kmeans算法机器学习
今天我们用「超市顾客分组」的例子来讲解K-means算法,从原理到实现一步步拆解,保证零基础也能懂!例子背景假设你是超市经理,手上有顾客的以下数据:顾客ID每月消费金额(元)每周到店次数130002250008335003470006520001你想把顾客分成3个群体,分别制定营销策略,该怎么做?K-means原理1.核心思想"物以类聚"——让相似特征的顾客自动聚成一类➡️通过计算距离,把数据划分
- 心脏病预测利器:基于机器学习的智能分析系统
松京焕Max
心脏病预测利器:基于机器学习的智能分析系统【下载地址】使用机器学习识别心脏病预测本项目专注于通过数据分析与机器学习算法来增强心脏病预测的能力。在当前医疗健康领域,数据驱动的方法已经成为提升疾病预防和治疗效果的关键。本项目采用真实的心脏病患者数据集,经过细致的数据清洗和预处理阶段,为模型的训练打下坚实基础项目地址:https://gitcode.com/open-source-toolkit/9a0
- Spark MLlib模型训练—分类算法 Decision tree classifier
猫猫姐
Spark实战spark-ml分类决策树
SparkMLlib模型训练—分类算法Decisiontreeclassifier决策树(DecisionTree)是一种经典的机器学习算法,广泛应用于分类和回归问题。决策树模型通过一系列的决策节点将数据划分成不同的类别,从而形成一棵树结构。每个节点表示一个特征的分裂,叶子节点代表最终的类别标签。在大数据场景下,SparkMLlib提供了对决策树的高效实现,能够处理大规模数据集并生成复杂的分类模型
- 机器学习算法-决策树
不会敲代码的灵长类
机器学习机器学习算法决策树
今天我们用一个「相亲决策」的例子来讲解决策树算法,保证你轻松理解原理和实现!决策树是什么?决策树就像玩「20个问题」猜谜游戏:你心里想一个东西(比如「苹果」)朋友通过一系列问题猜(「是水果吗?」→「是红色的吗?」→...)问的问题越精准,猜得越快!机器学习中的决策树:通过一系列「如果...那么...」的规则,把数据一步步分类。例子:用决策树决定是否相亲假设你是媒婆,手上有历史相亲数据,记录每个人的
- AIGC提示(prompt)飞升方法:走向专家之路
herosunly
大模型AIGCprompt专家之路
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了AIGC提示(prompt)飞升方法:走向专家之路,希望对学习大语言模型
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C