《深度学习之PyTorch实战计算机视觉》学习笔记(10)

这部分是利用pytorch 进行实战,利用迁移vgg16、resnet50 来实现多模型融合,实现猫狗的分类
代码基于python3.7, pytorch 1.0,cuda 10.0 .

PyTorch之多模型融合实战

基于PyTorch实现一个多模型的融合,使用的是多模型融合方法中的结果加权平均,其思路是首先构建两个卷积神经网络模型,然后使用我们的训练数据集分别对这两个模型进行训练和对参数进行优化,使用优化后的模型对验证集进行预测,并将各模型的预测结果进行加权平均以作为最后的输出结果,通过对输出结果和真实结果的对比,来完成对融合模型准确率的计算。-------来自《深度学习之PyTorch实战计算机视觉》

import torch
import torchvision
import os
import time
import matplotlib.pyplot as plt
from torchvision import datasets,models,transforms
from torch.autograd import Variable
%matplotlib inline
# 读取数据集
data_dir = 'DogsVSCats'
# 数据预处理
data_transform = {x: transforms.Compose([transforms.Resize([224,224]),
                                        transforms.ToTensor(),
                                        transforms.Normalize(mean = [0.5,0.5,0.5],std = [0.5,0.05,0.5])])for x in ['train','valid']}
# 读取数据集
image_datasets = {x: datasets.ImageFolder(root = os.path.join(data_dir,x),transform = data_transform[x])for x in ['train','valid']}
# 装载数据集
dataloader = {x: torch.utils.data.DataLoader(dataset = image_datasets[x],
                                            batch_size = 16,
                                            shuffle = True)for x in ['train','valid']}
# 数据预览,注意到由于上面图片的预处理中,图片进行了normaliza,因此不是显示原图
X_example, Y_example = next(iter(dataloader['train']))
print(u'X_example个数{}'.format(len(X_example)))
print(u'Y_example个数{}'.format(len(Y_example)))

index_classes = image_datasets['train'].class_to_idx   # 显示类别对应的独热编码
print(index_classes)

example_classes = image_datasets['train'].classes     # 将原始图像的类别保存起来
print(example_classes)

img = torchvision.utils.make_grid(X_example)
img = img.numpy().transpose([1,2,0])
print([example_classes[i] for i in Y_example])
plt.imshow(img) 
plt.show()
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).


X_example个数16
Y_example个数16
{'cat': 0, 'dog': 1}
['cat', 'dog']
['dog', 'dog', 'dog', 'cat', 'dog', 'dog', 'dog', 'cat', 'dog', 'cat', 'cat', 'cat', 'dog', 'dog', 'cat', 'cat']

《深度学习之PyTorch实战计算机视觉》学习笔记(10)_第1张图片

# 构建多模型融合结构
model_1 = models.vgg16(pretrained = True)
model_2 = models.resnet50(pretrained = True)

Use_gpu = torch.cuda.is_available()

# 设置模型的参数不需要进行梯度下降
for param in model_1.parameters():
    param.requires_grad = False
model_1.classifier = torch.nn.Sequential(torch.nn.Linear(25088,4096),
                                        torch.nn.ReLU(),
                                        torch.nn.Dropout(p = 0.5),
                                        torch.nn.Linear(4096,4096),
                                        torch.nn.ReLU(),
                                        torch.nn.Dropout(p = 0.5),
                                        torch.nn.Linear(4096,2))
for param in model_2.parameters():
    param.requires_grad = False
model_2.fc = torch.nn.Linear(2048,2)

print(model_1)
print(model_2)
VGG(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU(inplace)
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU(inplace)
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (6): ReLU(inplace)
    (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (8): ReLU(inplace)
    (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace)
    (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (13): ReLU(inplace)
    (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (15): ReLU(inplace)
    (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (18): ReLU(inplace)
    (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (20): ReLU(inplace)
    (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (22): ReLU(inplace)
    (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (25): ReLU(inplace)
    (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (27): ReLU(inplace)
    (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (29): ReLU(inplace)
    (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
  (classifier): Sequential(
    (0): Linear(in_features=25088, out_features=4096, bias=True)
    (1): ReLU()
    (2): Dropout(p=0.5)
    (3): Linear(in_features=4096, out_features=4096, bias=True)
    (4): ReLU()
    (5): Dropout(p=0.5)
    (6): Linear(in_features=4096, out_features=2, bias=True)
  )
)
ResNet(
  (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace)
  (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  (layer1): Sequential(
    (0): Bottleneck(
      (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (downsample): Sequential(
        (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Bottleneck(
      (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
    )
    (2): Bottleneck(
      (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
    )
  )
  (layer2): Sequential(
    (0): Bottleneck(
      (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (downsample): Sequential(
        (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Bottleneck(
      (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
    )
    (2): Bottleneck(
      (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
    )
    (3): Bottleneck(
      (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
    )
  )
  (layer3): Sequential(
    (0): Bottleneck(
      (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (downsample): Sequential(
        (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Bottleneck(
      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
    )
    (2): Bottleneck(
      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
    )
    (3): Bottleneck(
      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
    )
    (4): Bottleneck(
      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
    )
    (5): Bottleneck(
      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
    )
  )
  (layer4): Sequential(
    (0): Bottleneck(
      (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
      (downsample): Sequential(
        (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Bottleneck(
      (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
    )
    (2): Bottleneck(
      (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace)
    )
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
  (fc): Linear(in_features=2048, out_features=2, bias=True)
)
# 设置损失函数以及优化方法
if Use_gpu:
    model_1 = model_1.cuda()
    model_2 = model_2.cuda()
    
loss_f_1 = torch.nn.CrossEntropyLoss()
loss_f_2 = torch.nn.CrossEntropyLoss()

optimizer_1 = torch.optim.Adam(model_1.classifier.parameters(), lr = 0.00001)
optimizer_2 = torch.optim.Adam(model_2.fc.parameters(),lr = 0.00001)

# 设置两个模型融合的权重参数
weight_1 = 0.6
weight_2 = 0.4

epoch_n = 5
# 训练模型
time_open = time.time()

for epoch in range(epoch_n):
    print('Epoch{}/{}'.format(epoch, epoch_n - 1))
    print('-'*10)

for phase in ['train','valid']:
    if phase == 'train':
        print('Training...')
        model_1.train(True)
        model_2.train(True)
    else:
        print('Validing...')
        model_1.train(False)
        model_2.train(False)
    
    running_loss_1 = 0.0
    running_loss_2 = 0.0
    running_corrects_1 = 0.0
    running_corrects_2 = 0.0
    blending_running_corrects = 0.0
    
    for batch, data in enumerate(dataloader[phase], 1):
        X,Y = data
        if Use_gpu:
            X,Y = Variable(X.cuda()), Variable(Y.cuda())
        else:
            X,Y = Variable(X), Variable(Y)
            
        y_pred_1 = model_1(X)
        y_pred_2 = model_2(X)
        blending_y_pred = y_pred_1 * weight_1 + y_pred_2 * weight_2
        
        _, pred_1 = torch.max(y_pred_1.data,1) # 找出每一行最大值对应的索引值
        _, pred_2 = torch.max(y_pred_2.data,1)
        _, blending_y_pred = torch.max(blending_y_pred.data,1)
        
        optimizer_1.zero_grad()
        optimizer_2.zero_grad()
        
        loss_1 = loss_f_1(y_pred_1,Y)
        loss_2 = loss_f_2(y_pred_2,Y)
        
        if phase == 'train':
            loss_1.backward()
            loss_2.backward()
            optimizer_1.step()
            optimizer_2.step()
            
        running_loss_1 += loss_1.data.item()
        running_loss_2 += loss_1.data.item()
        running_corrects_1 += torch.sum(pred_1 == Y.data)
        running_corrects_2 += torch.sum(pred_2 == Y.data)
        blending_running_corrects += torch.sum(blending_y_pred == Y.data)
        
        if batch % 500 == 0 and phase == 'train':
            print('Batch {},Model1 Train Loss:{:.4f},Model1 Train ACC:{:.4f},Model2 Train Loss:{:.4f},Model2 Train ACC:{:.4f},Blending_Model ACC:{:.4f}'
                 .format(batch,running_loss_1/batch,100*running_corrects_1/(16*batch),running_loss_2/batch,100*running_corrects_2/(16*batch),100*blending_running_corrects/(16*batch)))
    
    epoch_loss_1 = running_loss_1 * 16/len(image_datasets[phase])
    epoch_acc_1 = 100*running_corrects_1/len(image_datasets[phase])
    epoch_loss_2 = running_loss_2 * 16/len(image_datasets[phase])
    epoch_acc_2 = 100*running_corrects_2/len(image_datasets[phase])
    epoch_blending_acc = 100*blending_running_corrects/len(image_datasets[phase])
    print('Epoch, Model1 Loss:{:.4f},Model1 ACC:{:.4f}%,Model2 Loss:{:.4f},Model2 ACC:{:.4f}%,Blending_Model ACC:{:.4f}'
         .format(epoch_loss_1,epoch_acc_1,epoch_loss_2,epoch_acc_2,epoch_blending_acc))

    time_end = time.time() - time_open
    print(time_end)

Epoch0/4

Epoch1/4

Epoch2/4

Epoch3/4

Epoch4/4

Training…
Batch 500,Model1 Train Loss:0.1905,Model1 Train ACC:92.0000,Model2 Train Loss:0.1905,Model2 Train ACC:80.0000,Blending_Model ACC:92.0000
Batch 1000,Model1 Train Loss:0.1563,Model1 Train ACC:93.0000,Model2 Train Loss:0.1563,Model2 Train ACC:86.0000,Blending_Model ACC:94.0000
Epoch, Model1 Loss:0.1481,Model1 ACC:94.0000%,Model2 Loss:0.1481,Model2 ACC:87.0000%,Blending_Model ACC:94.0000
206.29394793510437
Validing…
Epoch, Model1 Loss:0.1080,Model1 ACC:95.0000%,Model2 Loss:0.1080,Model2 ACC:95.0000%,Blending_Model ACC:96.0000
248.57402753829956

Process finished with exit code 0

你可能感兴趣的:(计算机视觉)