HDU 2588 GCD(欧拉函数)

GCD

思路

题目要求,对于给定的 n , m n, m n,m要求有多少数 ∑ i = 1 n g c d ( i , n ) > = m \sum _{i = 1} ^{n} gcd(i, n) >= m i=1ngcd(i,n)>=m

我们可以对这个式子进行化简,通过枚举 d = g c d ( i , n ) d = gcd(i, n) d=gcd(i,n)

∑ d ∣ n ∑ i = 1 n g c d ( i , d ) = = d \sum _{d \mid n} \sum _{i = 1} ^{n} gcd(i, d) == d dni=1ngcd(i,d)==d

= ∑ d ∣ n ∑ i = 1 n d g c d ( i , d ) = = 1 = \sum_{d \mid n} \sum _{i = 1}^{\frac{n}{d}} gcd(i, d) == 1 =dni=1dngcd(i,d)==1

= ∑ d ∣ n ϕ ( n d ) = \sum _{d\mid n} \phi(\frac{n}{d}) =dnϕ(dn)

我们只要在统计答案的时候特判一下 d d d就行了。

代码

/*
  Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include 

#define mp make_pair
#define pb push_back
#define endl '\n'

using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;

const double pi = acos(-1.0);
const double eps = 1e-7;
const int inf = 0x3f3f3f3f;

int eular(int x) {
    int ans = x;
    for(int i = 2; i * i <= x; i++) {
        if(x % i == 0) {
            while(x % i == 0) {
                x /= i;
            }
            ans = ans / i * (i - 1);
        }
    }
    if(x != 1) ans = ans / x * (x - 1);
    return ans;
}

int main() {
    // freopen("in.txt", "r", stdin);
    // freopen("out.txt", "w", stdout);
    ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    int T, t = 1; cin >> T;
    while(T--) {
        int n, m, ans = 0;
        cin >> n >> m;
        for(int i = 1; i * i <= n; i++) {
            if(n % i == 0) {
                if(i >= m) {
                    ans += eular(n / i);
                }
                if(i * i != n && n / i >= m) {
                    ans += eular(i);
                }
            }
        }
        cout << ans << endl;
    }
    return 0;
}

你可能感兴趣的:(数论)