- 遥感之智能优化算法大纲介绍
遥感-GIS
遥感之智能优化算法图像处理arcgis启发式算法
介绍近年来在遥感及人工智能领域研究比较火热的智能优化算法,其中被广泛使用的比如粒子群算法和遗传算法等,在遥感领域,比如高光谱特征选择,机器学习超参数优化等方向有众多的应用,除了提到了两个算法之外,还有众多其他算法,本专栏基于《智能优化算法与涌现计算》及其相关资料,对智能优化算法做些详细的整理和总结,以期给遥感或其他领域提供有价值的参考。书籍大纲为:第一篇仿人智能优化算法描述模拟人脑思维、人体系统、
- 经典算法之链表篇(三)
dlwlrma ⥳
LeetCode刷题算法链表数据结构
目录一:旋转链表(LeetCode.61)二:LRU缓存(LeetCode.146)有关链表的其他算法题,可以参考我上篇写的文章经典算法之链表篇(二)一:旋转链表(LeetCode.61)问题描述:给你一个链表的头节点head,旋转链表,将链表每个节点向右移动k个位置。示例:输入:head=[1,2,3,4,5],k=2输出:[4,5,1,2,3]解题思路:计算链表的长度,并找到链表的尾节点,同时
- 深度探索:机器学习中的序列到序列模型(Seq2Seq)原理及其应用
生瓜蛋子
机器学习机器学习人工智能
目录1.引言与背景2.庞特里亚金定理与动态规划3.算法原理4.算法实现5.优缺点分析优点缺点6.案例应用7.对比与其他算法8.结论与展望1.引言与背景在当今信息爆炸的时代,机器学习作为人工智能领域的核心驱动力,正以前所未有的深度和广度渗透进我们的日常生活。从语言翻译、文本摘要、语音识别到对话系统,众多自然语言处理(NLP)任务的成功解决离不开一种强大的模型架构——序列到序列(Sequence-to
- Java基础算法之堆排序(Heap Sort)
被惦记的猫
排序算法算法排序算法堆排序
堆排序(HeapSort)1、堆介绍2、算法介绍3、图解4、代码实现5、执行结果6、其他算法1、堆介绍大顶堆:非叶子结点的数据要大于或等于其左,右子节点的数据小顶堆:非叶子结点的数据要小于或等于其左,右子节点的数据2、算法介绍先从后面的非叶子结点从后向前将结点构建成一个大顶堆(小顶堆)。此时根节点就是最大的数据(最小的数据),然后将根节点与数组最后一位进行交换。交换后再从根节点开始构建堆(此时树的
- 基础算法 - 快速排序、归并排序、二分查找、高精度模板、离散化数据
Calebbbbb
算法算法排序算法二分高精度模板离散化快速排序归并排序
文章目录前言Part1:排序一、快速排序二、归并排序Part2:二分一、二分-查找左边界二、二分-查找右边界Part3:高精度一、高精度加法二、高精度减法三、高精度乘法四、高精度除法Part4:离散化一、区间和前言由于本篇博客相较而言都是算法中最基础的模板,包括快速排序、归并排序、二分、高精度加减乘除法、离散化。这些基础模板多与其他算法混合考察,这些模板是许多算法的实现基础。Part1:排序快速排
- 蓝桥杯:C++二叉树
DaveVV
蓝桥杯c++蓝桥杯c++算法数据结构c语言
二叉树几乎每次蓝桥杯软件类大赛都会考核二叉树,它或者作为数据结构题出现,或者应用在其他算法中。大部分高级数据结构是基于二叉树的,例如常用的高级数据结构线段树就是基于二叉树的。二叉树应用广泛和它的形态有关。二叉树的定义:二叉树的第1层是一个结点,称为根,它最多有两个子结点,分别是左子结点、右子结点,以它们为根的子树称为左子树、右子树。二叉树上的每个结点,都是按照这个规则逐层往下构建出来的。图3.4二
- shiro登陆时密码加盐哈希实现和简单原理
ignoHH
javashirospringbootjavashiro密码学
shiro登陆时密码加盐哈希实现版权声明:本文为博主原创文章,遵循CC4.0BY-SA版权协议,转载请附上原文出处链接和本声明。本文链接:https://blog.csdn.net/wy862740672/article/details/109818314实现废话不多说,开搞。此篇采用SHA-256哈希算法,采用其他算法只需要更改算法名字段。1.在shiro配置中添加对于HashedCredent
- 面试:正确率能很好的评估分类算法吗
华农DrLai
分类数据挖掘人工智能机器学习深度学习大数据算法
正确率(accuracy)正确率是我们最常见的评价指标,accuracy=(TP+TN)/(P+N),正确率是被分对的样本数在所有样本数中的占比,通常来说,正确率越高,分类器越好。不同算法有不同特点,在不同数据集上有不同的表现效果,根据特定的任务选择不同的算法。如何评价分类算法的好坏,要做具体任务具体分析。对于决策树,主要用正确率去评估,但是其他算法,只用正确率能很好的评估吗?答案是否定的。正确率
- 2019-10-10 kNN近邻算法
lqzzz
kNN近邻算法算法原理样本点的特性与该邻居点的特性类似,可以简单理解为“物以类聚”。因此可以使用目标点的多个邻近点的特性表示当前点的特性。k近邻算法是非常特殊的,可以被认为是没有模型的算法,为了和其他算法统一,可以认为训练数据集就是模型本身。KNN分类算法:“投票法”,选择这k个样本中出现最多的类别标记作为预测结果。KNN回归算法:“平均法”,将这k个样本的实值输出标记的平均值作为预测结果。欧拉距
- 字符串匹配算法--数据结构与算法之美--CH32
csdn_SUSAN
数据结构和算法字符串匹配RK算法BF算法
文章目录1.什么是字符串匹配2.如何实现字符串匹配2.1BF算法2.2.1BF算法常用原因2.2RK算法2.2.1hash算法的设计2.2.2散列冲突处理3.其他算法简介4.思考总结1.什么是字符串匹配 “字符串匹配”就是在一个长字符串A中搜索一个短的字符串B,此时A称为主串,B称为模式串。 把主串A的长度记作n,模式串B的长度记作m,因为在主串中查找模式串,所以n>m。2.如何实现字符串匹配
- 算法——滑动窗口+前缀和
debugBiubiubiu2000
数据结构和算法算法滑动窗口前缀和差分数组leetcode
在刷leetcode时,看到一道精选的题解一次搞定前缀和觉得非常有用,文章的作者总结了关于滑动窗口和前缀和的知识点,于是想着在自己的博客做个记录,方便自己后面的学习回顾。该作者的关于其他算法知识的总结:算法知识点总结滑动窗口滑动窗口这一内容复制粘贴于:滑动窗口常见套路滑动窗口主要用来处理连续问题。比如题目求解“连续子串xxxx”,“连续子数组xxxx”,就应该可以想到滑动窗口。能不能解决另说,但是
- 梯度提升树系列1——梯度提升树(GBDT)入门:基本原理及优势
theskylife
数据挖掘python机器学习数据挖掘GBDT
目录写在开头1.GBDT的基本原理1.1GBDT的定义1.2GBDT的工作机制1.2.1初始化1.2.2迭代训练1.2.3集成预测2.GBDT的优势2.1高精度预测能力2.2对各种类型数据的适应性2.3在数据不平衡情况下的优势2.4鲁棒性与泛化能力2.5特征重要性评估2.6高效处理大规模数据3.与其他算法的比较3.1与随机森林的比较3.2与支持向量机的比较3.3与神经网络的比较写在最后梯度提升树(
- 【SparkML实践7】特征选择器FeatureSelector
周润发的弟弟
Spark机器学习spark-ml
本节介绍了用于处理特征的算法,大致可以分为以下几组:提取(Extraction):从“原始”数据中提取特征。转换(Transformation):缩放、转换或修改特征。选择(Selection):从更大的特征集中选择一个子集。局部敏感哈希(LocalitySensitiveHashing,LSH):这类算法结合了特征转换的方面与其他算法。FeatureSelectorsVectorSlicerVe
- 【Spark实践6】特征转换FeatureTransformers实践Scala版--补充算子
周润发的弟弟
Spark机器学习sparkscala大数据
本节介绍了用于处理特征的算法,大致可以分为以下几组:提取(Extraction):从“原始”数据中提取特征。转换(Transformation):缩放、转换或修改特征。选择(Selection):从更大的特征集中选择一个子集。局部敏感哈希(LocalitySensitiveHashing,LSH):这类算法结合了特征转换的方面与其他算法。FeatureTransformersIndexToStri
- 【SparkML实践5】特征转换FeatureTransformers实战scala版
周润发的弟弟
Spark机器学习spark-mlscala开发语言
本节介绍了用于处理特征的算法,大致可以分为以下几组:提取(Extraction):从“原始”数据中提取特征。转换(Transformation):缩放、转换或修改特征。选择(Selection):从更大的特征集中选择一个子集。局部敏感哈希(LocalitySensitiveHashing,LSH):这类算法结合了特征转换的方面与其他算法。本章节主要讲转换1FeatureTransformersTo
- 【SparkML系列3】特征提取器TF-IDF、Word2Vec和CountVectorizer
周润发的弟弟
spark-mltf-idfword2vec
本节介绍了用于处理特征的算法,大致可以分为以下几组:提取(Extraction):从“原始”数据中提取特征。转换(Transformation):缩放、转换或修改特征。选择(Selection):从更大的特征集中选择一个子集。局部敏感哈希(LocalitySensitiveHashing,LSH):这类算法结合了特征转换的方面与其他算法。###FeatureExtractors(特征提取器)###
- SHADE和SaDE跑CEC2017测试集
树洞优码
算法改进优化算法差分进化算法改进差分进化算法
SHADE和SaDE跑CEC2017测试集对比图,并分别连续运行30次并且输出最优值,最差值,平均值,标准差基于成功历史的参数自适应差分进化算法(SHADE)是经典的差分进化变体,该论文发表于2013年,性能非常有参考价值,可用于和其他算法进行对比试验,该算法尤其是在CEC测试集上有着优秀的表现,将此算法用作对比算法,可以极大增强试验的说服力。提升论文被录用的概率。参考文献:RyojiTanabe
- Python的hashlib模块:7种加密算法深入剖析
傻啦嘿哟
关于python那些事儿python哈希算法开发语言
目录一、引言二、哈希算法简介三、hashlib模块中的加密算法MD5SHA1SHA224/SHA256/SHA384/SHA512SHA3其他算法:四、加密算法比较与选择五、实际应用与注意事项六、总结本文将深入探讨Python的hashlib模块,重点解析其中的七种加密算法:MD5、SHA1、SHA224、SHA256、SHA384、SHA512和SHA3。我们将通过理论、代码示例和实际应用来展示
- XGBoost系列3——XGBoost在多分类问题中的应用
theskylife
数据分析数据挖掘分类数据挖掘人工智能python机器学习
目录写在开头1.多分类问题的介绍1.1什么是多分类问题?1.2多分类问题的挑战1.3XGBoost如何应对多分类问题?1.4多分类问题的应用场景2.XGBoost中的多分类支持2.1分类原理2.2Softmax损失函数2.3One-vs-All与One-vs-One2.4多分类性能优势2.5超参数调优2.6特征重要性分析2.7模型解释性2.8一个简单的例子3.对比XGBoost与其他算法在多分类任
- 【信息学奥赛一本通 提高组】第二章 二分与三分
weixin_30609287
c/c++数据结构与算法
一、二分二分法,在一个单调有序的集合或函数中查找一个解,每次分为左右两部分,判断解在那个部分并调整上下界,直到找到目标元素,每次二分都将舍弃一般的查找空间,因此效率很高。二分常见模型1、二分答案最小值最大(或是最大值最小)问题,这类双最值问题常常选用二分法求解,也就是确定答案后,配合贪心,DP等其他算法检验这个答案是否合理,将最优化问题转化为判定性问题。例如,将长度为n的序列ai分为最多m个连续段
- Nginx 如何实现负载均衡?
恒创HengHost
nginx负载均衡运维
Nginx是一个高性能的HTTP和反向代理服务器,也是一个IMAP/POP3/SMTP代理服务器。由于其具有丰富的功能和出色的性能,Nginx广泛应用于Web开发、负载均衡、反向代理等场景。在负载均衡方面,Nginx可以实现基于轮询、IP_HASH、URL_HASH和其他算法的负载均衡。本文将详细介绍Nginx如何实现负载均衡。一、Nginx负载均衡简介负载均衡是一种将请求分发到多个服务器或应用程
- yolov5 主要流程
isserendipity
yolov5YOLO
1.介绍本文包含了有关yolov5目标检测的基本流程,包括模型训练与模型部署,旨在帮助小伙伴们建立系统的认知YOLO是"Youonlylookonce"的首字母缩写,是一个开源软件工具,它具有实时检测特定图像中物体的高效能力。YOLO算法使用卷积神经网络(CNN)模型来检测图像中的物体。该算法只需要通过给定的神经网络进行一次前向传播就能检测到图像中的所有物体。这使YOLO算法在速度上比其他算法更有
- python开源项目之五子棋
falwat
opensourcepythonpython五子棋
目录概述特色流程文件组成关于嵌入你的AI算法概述本项目实现了一个带GUI的五子棋程序,源码可以从github获取.除此之外,源码目录下还有一个命令行式的五子棋代码.特色界面使用tkinter设计;提供了一个简单的Minxmax博弈算法;游戏双方均可设置为通过鼠标人工下子;游戏双方均可设置为AI下子;游戏支持自动重复开局(方便测试AI算法);方便嵌入其他算法;流程运行gobang.py,启动程序;点
- 模拟算法(模拟算法 == 依葫芦画瓢)万字
川入
算法专栏算法模拟算法
模拟算法基本思想引入算法题替换所有的问号提莫攻击Z字形变换外观数列数青蛙基本思想 模拟算法==依葫芦画瓢解题思维要么通俗易懂,要么就是找规律,主要难度在于将思路转换为代码。特点:相对于其他算法思维,思路比较简单(没有很多的弯弯绕绕,考察的是代码能力)。大致做题流程模拟算法流程(一定要在演草纸上过一遍-容易忽略细节)把流程转换为代码引入算法题替换所有的问号链接:https://leetcode.c
- 使用numpy处理图片——模糊处理
breaksoftware
numpynumpy
大纲高斯模糊方框模糊其他算法median_filtermaximum_filterminimum_filterpercentile_filterrank_filtergaussian_laplacecorrelatemorphological_laplacewhite_tophatmorphological_gradientblack_tophat在《使用numpy处理图片——滤镜》一文中,我们尝
- 遗传算法(GA)、模拟退火算法(SAA)、蚁群算法(ACO)、粒子群算法(PSO)优缺点汇总
筱筱西雨
算法模拟退火算法机器学习遗传算法启发式算法
遗传算法优点:与问题领域无关且快速随机的搜索能力,不会陷入局部最优解;搜索从群体出发,具有潜在的并行性,提高运行速度,鲁棒性高;搜索使用评价函数启发,过程简单;使用概率机制进行迭代,具有随机性;具有可扩展性,容易与其他算法结合。缺点:1.遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码;2.另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严
- (leetcode)替换所有的问号 -- 模拟算法
Lei宝啊
算法算法模拟算法
个人主页:Lei宝啊愿所有美好如期而遇本题链接力扣(LeetCode)输入描述stringmodifyString(strings)输入一个字符串,字符串中仅包含小写字母和‘?’字符。输出描述将问号替换为小写字母,且这个替换的小写字母与他前后的字母不相同。算法分析模拟,实际上就是根据题目描述做题,不用考虑什么二分,前缀和等等,相对于其他算法比较简单,就是单纯的考察代码能力。本题我们直接循环遍历数组
- 集成学习(1)- 导论
木头里有虫911
首先明确一下为什么要进行集成学习的系统学习。我们先从机器学习说起。什么是机器学习?一言以蔽之,即一种算法。何谓算法?即通过有限的步骤解决一个问题的方法。而机器学习是一种什么样的算法呢?与其他算法不同,机器学习是通过数据来解决问题。通过学习数据中暗含的规律来预测或者分类是机器学习要解决的主要问题。如今,机器学习算法常被人们拿过来解决一些业内知名或者时间长久的老大难问题。一些问题也常被拿来作为一些比赛
- OpenVINS学习5——VioManager.cpp/h学习与注释
独孤西
SLAM学习
前言之前又看到说VioManager.cpp/h是OpenVINS中的核心程序,这次就看看这里面都写了啥,整体架构什么样,有哪些函数功能。具体介绍:VioManager类整体分析VioManager类包含MSCKF工作所需的状态和其他算法。我们将测量结果输入到此类中,并将它们发送到各自的算法。如果我们有要传播或更新的测量值,此类将调用我们的状态来执行此操作。主要包含下面6个函数/类:VioMana
- OpenSSL 命令详解(二)——摘要算法、签名、验签
锋影Q
操作系统平台QNX汽车电子androidlinux
锋影email:
[email protected]如果你认为本系列文章对你有所帮助,请大家有钱的捧个钱场,点击此处赞助,赞助额0.1元起步,多少随意本文主要介绍OpenSSL摘要计算命令。ref:http://blog.csdn.net/as3luyuan123/article/details/14046375用什么摘要算法指令代替时,默认使用该算法,但也可以指定其他算法。使用指令openssldg
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo