鲁棒优化论文阅读笔记

1. Robert P. Rooderkerk, Harald J. van Heerde, Robust Optimization of the 0-1 Knapsack Problem: Balancing Risk and Return in Assortment Optimization, European Journal of Operational Research.
产品组合问题的主要困难:

(1) 每个产品的顾客需求是随机的 (demand of individual products is stochastic);
(2) 不同产品的需求之间存在着正的或者负的协方差 (it may show positive or negative correlations with the demand of other products in the assortment);

历史文献观点:

Fisher, 零售水平的需求波动性增加导致了许多不良后果,如牛鞭效应(increased demand volatility at the retail level has led to many undesirable consequences such as the bullwhip effect),从而导致了零售商现金流的高波动性(results in a high variance of the associated cash flows),因此需要增加流动资金(working capital)。 ⇒ \Rightarrow 零售商将受益于对冲产品组合需求不确定性带来的风险(retailers would benefit from hedging the risks arising from demand uncertainty of product assortments)。 ⇒ \Rightarrow 风险回报法(risk-return approach)

论文主要贡献:

发展了分类优化的经验风险回报方法(developing an empirical risk-return approach to assortment optimization)。模型构建上,将其看作是鲁棒0-1背包问题的一个特例,目的是最大化背包中所有物品的预期总收益,同时考虑每个物品收益的不确定性(a special case of the robust 0-1 knapsack problem that aims to maximize the expected total benefit of all items in a knapsack while accounting for the uncertainty in each item’s benefit)。

  • 开发一种分类优化的经验风险回报方法(develop an empirical risk-return approach to assortment optimization)
  • 开发一种能够处理大数据的有效启发式方法维度和提供实时(近)最优解决方案,以最佳方式平衡风险和回报(develop an efficient heuristic that is able to deal with the large data dimensions and provides real-time (near-)optimal solutions that optimally balance risk and return)
创新点:
  • 考虑利润的随机性:分类优化文献中的当前实践假设利润是确定性的,没有风险规避。我们考虑利润是随机的,决策者是规避风险的情况(Current practice in the assortment optimization literature assumes profits are deterministic, and there is no risk aversion. We allow for situations in which profit is stochastic and the decision maker is risk averse.)
  • 引入了一种最先进的启发式方法来解决鲁棒0-1背包问题(introduce a state-of-the art heuristic for solving a robust 0-1 knapsack problem)
  • 鲁棒优化的实证研究 ⇒ \Rightarrow 总的来说,大收益(风险降低)只需要小牺牲(预期回报减少)(on aggregate, a large gain (risk reduction) only requires a small sacrifice (decrease in expected return)).
技术难点:

它是一个高维的背包问题:零售商比以前拥有更多的产品和类别(retailers carry more products and categories than before),并且在店铺级别拥有更多的定制化产品组合(and increasingly customize their assortment at the store level)。 ⇒ \Rightarrow 风险投资组合优化的经验方法应该在大型数据集上有效地工作(an empirical method for risk-return assortment optimization should work efficiently on large data sets).

启发式算法利用了有效边界的性质,即没有有效分类的方差超过最优名义分类的方差。(The heuristic capitalizes on the property of the Efficient Frontier that there is no efficient assortment with a variance that exceeds the variance of the optimal nominal assortment q NOM max ⁡ q^{\max}_{\text{NOM}} qNOMmax)

有效边界启发法(Efficient Frontier Heuristic):

初始化条件
1. 解决原零售产品组合优化问题。得到最优原收益 ∏ NOM ∗ \prod^*_{\text{NOM}} NOM
2. 寻找产品组合,使其收益等于最优原收益 ∏ NOM ∗ \prod^*_{\text{NOM}} NOM 同时风险最小;
3. 初始化如下变量:
⋅ \cdot 最大方差 q NOM max ⁡ q^{\max}_{\text{NOM}} qNOMmax 等于第2步中找到的产品组合的方差
⋅ \cdot 当前得到的最优鲁棒收益 ∏ ROB best \prod^{\text{best}}_{\text{ROB}} ROBbest 等于第2步中找到的产品组合的鲁棒收益
⋅ \cdot 最近得到的有效产品组合的方差 q recent q^{\text{recent}} qrecent 等于 q NOM max ⁡ q^{\max}_{\text{NOM}} qNOMmax
⋅ \cdot s s s 为方差网格的步长,隐含的方差网格可以描述为 { ( 1 − n ∗ s 100 ) × q NOM max ⁡ , n = 1 , ⋯   , 100 s } \left\{\left(1-n*\frac{s}{100}\right)\times q^{\max}_{\text{NOM}},n=1,\cdots,\frac{100}{s}\right\} {(1n100s)×qNOMmax,n=1,,s100}

循环算法(Repeat until termination)
4. 更新优化问题 ( R A O L i m i t e d ) (RAO_{Limited}) (RAOLimited) 的方差上界 q q q 等于方差网格中低于 q recent q^{\text{recent}} qrecent 的最邻近点,然后求解优化问题 ( R A O L i m i t e d ) (RAO_{Limited}) (RAOLimited)
5. 更新 q recent q^{\text{recent}} qrecent 为第4步中计算得到的产品组合的方差;
6. 如果第4步中得到的产品组合的鲁棒收益高于 ∏ ROB best \prod^{\text{best}}_{\text{ROB}} ROBbest,则将 ∏ ROB best \prod^{\text{best}}_{\text{ROB}} ROBbest 更新为此值;
7. 如果到达方差网格的终点或者确信再也找不到更优的鲁棒解,则算法终止。

模型特点:

前提是零售商可能更喜欢回报(预期利润)稍低但风险(不确定性)小得多的产品组合(The premise is that the retailer may prefer an assortment that is associated with slightly less return (expected profit) yet with a lot less risk (uncertainty))。 ⇒ \Rightarrow 多目标鲁棒模型的目标函数不仅偏爱回报同时也惩罚风险(The objective function of the robust multiobjective counterpart favors returns while simultaneously penalizing risk)

实证研究:
  • 利用 全枚举方法,对零售分类优化问题的综合数据和实证数据进行了鲁棒性检验。(Using full enumeration, we test the robust approach on both synthetic and empirical data concerning retail assortment optimization problems.) ⇒ \Rightarrow 研究结论:许多鲁棒解提供了一种方案,使得零售商可以在只降低了很小的预期收益的情况下,大幅降低不确定性风险(many of the robust solutions provide retailers with a considerable reduction in uncertainty (variance), with only a small reduction in expected profit.). 但是,在维数很大的情况下,全枚举法就失效了。
  • 通过快速构造风险回报有效边界的子集(quickly constructing a subset of the risk-return Efficient Frontier) ⇒ \Rightarrow 提出了一种有效的前沿启发式方法,可以提供各种各样的(接近)实时平衡回报和风险的最佳方法(propose an Efficient Frontier heuristic that provides assortments that (near-) optimally balance return and risk in real-time).
    具体实现途径是: 高效产品组合或帕累托最优(efficient (or Pareto-optimal) assortment) 构成所有解空间的一个非常小的子集,从而大大降低了问题的复杂度。
    事后法(posteriori method):用于解决多目标函数问题的一个方法。

你可能感兴趣的:(鲁棒优化)