- 图像算法实习生--面经1
小豆包的小朋友0217
算法
系列文章目录文章目录系列文章目录前言一、为什么torch里面要用optimizer.zero_grad()进行梯度置0二、Unet神经网络为什么会在医学图像分割表现好?三、transformer相关问题四、介绍一下胶囊网络的动态路由五、yolo系列出到v9了,介绍一下你最熟悉的yolo算法六、一阶段目标检测算法和二阶段目标检测算法有什么区别?七、讲一下剪枝八、讲一下PTQandQAT量化的区别九、
- Mamba-UNet:用于医学图像分割的类似UNet的纯视觉Mamba网络
AI浩
高质量人类CV论文翻译深度学习人工智能计算机视觉
摘要在医学图像分析的最新进展中,卷积神经网络(CNN)和视觉转换器(ViT)都取得了显著的基准成绩。前者通过其卷积操作在捕获局部特征方面表现出色,而后者则通过利用自注意力机制实现了出色的全局上下文理解。然而,这两种架构在有效建模医学图像中的长距离依赖关系时都存在局限,这对于精确分割至关重要。受到Mamba架构的启发,该架构因其处理长序列和全局上下文信息的能力以及作为国家空间模型(SSM)的增强计算
- 三维重建 阈值分割 3D可视化 医学图像分割 CT图像分割及重建系统 可视化编程技术及应用
恋恋西风
VTK毕业设计和论文qt三维重建VTKITK图像分割
一、概述此系统实现了常见的VTK四视图,实现了很好的CT图像分割,可以用于骨骼,头部,肺部,脂肪等分割,,并且通过三维重建实现可视化。使用了第三方库VTK,ITK实现分割和生不重建。窗口分为(横断面)、冠状面、矢状面,和3D窗口;包含了体绘制和面绘制;效果:CT分割重建二、开发环境操作系统:Windows10:工具:Qt5.12.4+VisualStudio2017,使用开源库:VTK-8.1IT
- 3D Slicer-最强大的开源医学图像分割工具简要概述
Tina姐
标注软件医学图像分割医学图像深度学习人工智能
3DSlicer-最强大的开源医学图像分割工具简要概述本系列涵盖从3DSlicer医学图像查看器的基础使用到高级自动分割扩展程序的内容(从入门到高阶!),具体包括软件安装、基础使用教程,自动分割扩展(totalsegmentator,monailabel)快速标注数据。我们将学习3DSlicer的基础知识,并熟悉其内置模块、扩展和图像处理工具。熟悉这些工具和3DSlicer工作流程将使我们能够了解
- CVPR 2024:在笔记本终端分割一切医学图像挑战赛进行中
Tina姐
计算机视觉人工智能深度学习医学图像
竞赛题目:CVPR2024:SEGMENTANYTHINGINMEDICALIMAGESONLAPTOP组织者:Junma(
[email protected])主办单位:JunMa(多伦多大学)YuyinZhou(加州大学圣克鲁斯分校)BoWang(多伦多大学)比赛概述医学图像分割是临床实践中的关键步骤,有助于准确量化解剖结构和病理区域。该领域目前正在经历范式转变,从为单个任务设计的专用模型转
- Swin-UMamba:结合基于ImageNet的预训练和基于Mamba的UNet模型
AI浩
人工智能计算机视觉
摘要https://arxiv.org/pdf/2402.03302v1.pdf准确的医学图像分割需要整合从局部特征到全局依赖的多尺度信息。然而,现有方法在建模长距离全局信息方面面临挑战,其中卷积神经网络(CNNs)受限于其局部感受野,而视觉转换器(ViTs)则受到其注意力机制高二次复杂度的困扰。最近,基于Mamba的模型因其在长序列建模中的出色能力而备受关注。多项研究表明,这些模型在各种任务中可
- Swin-Unet: Unet-like Pure Transformer forMedical Image Segmentation(用于医学图像分割的纯U型transformer)
我在努力学习分割(禁止说我水平差)
transformer深度学习人工智能1024程序员节
本文的翻译是参考的:[Transformer]Swin-Unet:Unet-likePureTransformerforMedicalImageSegmentation_unet-likepuretransformer-CSDN博客方便自己学习摘要:在过去的几年中,卷积神经网络(cnn)在医学图像分析方面取得了里程碑式的进展。特别是基于u型结构和跳跃连接的深度神经网络在各种医学图像任务中得到了广泛
- 周报(20240204)
来自宇宙的曹先生
研究生阶段周报周报
日期:2024.1.29-2024.2.4本周工作:1.阅读论文本周主要对这篇文献进行了阅读:《用可学习的跳跃连接缩小U-Net中的语义差距:以医学图像分割为例》背景医学图像分割和随后对目标对象的定量评估为疾病诊断和治疗规划提供了有价值的信息。最近的语义分割方法通常依赖于类UNet的编码器-解码器架构,其中编码器产生高级语义特征,解码器逐渐对这些隐藏特征进行上采样,以产生具有每像素概率的分割图。大
- 周报(20240128)
来自宇宙的曹先生
研究生阶段周报深度学习医学图像分割人工智能
日期:2024.1.22-2024.1.28本周工作:1.阅读论文本周阅读了以下论文:《BRAU-Net:用于医学图像分割的U形混合CNN-Transformer网络》背景精确的医学图像分割对于临床量化、疾病诊断、治疗计划和许多其他应用至关重要。基于卷积和基于Transformer的u形结构在各种医学图像分割任务中都取得了显著的成功。前者可以有效地学习图像的局部信息,同时需要卷积运算所固有的更多特
- 文献翻译(BRAU-Net++: U-Shaped Hybrid CNN-Transformer Network for Medical Image Segmentation)
来自宇宙的曹先生
文献翻译cnntransformer人工智能
BRAU-Net++:U-ShapedHybridCNN-TransformerNetworkforMedicalImageSegmentationBRAU-Net:用于医学图像分割的U形混合CNN变换网络LibinLan,Member,IEEE,PengzhouCai,LuJiang,XiaojuanLiu,YongmeiLi,andYudongZhang,SeniorMember,IEEE摘要
- 深度学习实验-3d医学图像分割
桶的奇妙冒险
深度学习3d人工智能
实验四基于nnU-Net模型的3D医学图像分割实验一、实验介绍腹部多器官分割一直是医学图像分析领域最活跃的研究领域之一,其作为一项基础技术,在支持疾病诊断,治疗规划等计算机辅助技术发挥着重要作用。近年来,基于深度学习的方法在该领域中获得了巨大成功。本实验数据集为多模态腹部分割数据集(AMOS),一个大规模,多样性的,收集自真实临床场景下的腹部多器官分割基准数据。本实验在百度飞桨平台上采用nnU-N
- ConvFormer: Plug-and-Play CNN-StyleTransformers for Improving Medical ImageSegmentation
我在努力学习分割(禁止说我水平差)
cnn人工智能神经网络
ConvFormer:改进医学图像分割的即插即用CNN风格转换器摘要:Transformer在医学图像分割中被广泛研究,以建立成对的长程依赖关系(像素之间的长程依赖关系)。然而,相对有限的注释良好的医学图像数据使transformer难以提取不同的全局特征,(这句话指的是在医学图像数据中,往往存在着相对较少的注释信息,这些注释信息通常用于描述图像中的不同结构、病变或特征。由于注释信息有限,传统的深
- Annotator Consensus Prediction for MedicalImage Segmentation with Diffusion Models
我在努力学习分割(禁止说我水平差)
人工智能计算机视觉
基于扩散模型的医学图像分割的注释器共识预测摘要医学图像分割的一个主要挑战是多个专家提供的注释中观察者之间和观察者内部的差异很大。为了解决这一挑战,我们提出了一种利用扩散模型进行多专家预测的新方法。我们的方法利用基于扩散的方法将来自多个注释的信息合并到一个反映多个专家共识的统一分割图中。我们在多个专家注释的医学分割数据集上评估了我们的方法的性能,并将其与最先进的方法进行了比较。结果证明了该方法的有效
- MedSegDiff-V2: Diffusion based Medical Image Segmentation with Transformer
我在努力学习分割(禁止说我水平差)
transformer深度学习人工智能
MedSegDiff-V2:基于变压器的扩散医学图像分割摘要扩散概率模型(DiffusionProbabilisticModel,DPM)最近在计算机视觉领域获得了广泛的应用,这要归功于它的图像生成应用,如Imagen、LatentDiffusionModels和StableDiffusion,这些应用已经展示了令人印象深刻的能力,并在社区内引发了许多讨论。最近的研究进一步揭示了DPM在医学图像分
- 【图像分割】【深度学习】Windows10下UNet代码Pytorch实现与源码讲解
牙牙要健康
深度学习图像分割深度学习pytorch人工智能
【图像分割】【深度学习】Windows10下UNet代码Pytorch实现与源码讲解提示:最近开始在【医学图像分割】方面进行研究,记录相关知识点,分享学习中遇到的问题已经解决的方法。文章目录【图像分割】【深度学习】Windows10下UNet代码Pytorch实现与源码讲解前言UNet模型运行环境搭建UNet模型运行数据集与模型权重下载PFNet训练与测试总结前言UNet是由德国弗赖堡大学的Ola
- mask transformer相关论文阅读
鱼小丸
transformer论文阅读深度学习
前面讲了mask-transformer对医学图像分割任务是非常适用的。本文就是总结一些近期看过的mask-transformer方面的论文。因为不知道masktransformer是什么就看了一些论文。后来得出结论,应该就是生成mask的transformer就是masktransformer。DETR很多这些论文都是受到DETR的启发得到的。DETR为数不多的目标检测里端到端的模型,它把目标检
- U-Net的原理
来自宇宙的曹先生
深度学习
U-Net是一种专为医学图像分割而设计的卷积神经网络(CNN)架构。它于2015年由OlafRonneberger、PhilippFischer和ThomasBrox提出,特别适用于需要精确定位的应用场景,比如生物医学图像处理。以下是U-Net的主要原理和组成部分的详细解释:U-Net的结构对称的U形结构:U-Net的主要特点是其U型对称结构,由一个“编码器”(收缩路径)和一个“解码器”(扩张路径
- 【论文阅读笔记】Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation
咔叽布吉
论文阅读学习论文阅读笔记transformer
1.介绍Swin-Unet:Unet-likePureTransformerforMedicalImageSegmentationSwin-Unet:用于医学图像分割的类Unet纯Transformer2022年发表在ComputerVision–ECCV2022WorkshopsPaperCode2.摘要在过去的几年里,卷积神经网络(CNN)在医学图像分析方面取得了里程碑式的成就。特别是基于U型
- 【论文阅读笔记】Sam3d: Segment anything model in volumetric medical images[
cskywit
SAM类医学图像分割论文阅读笔记
BuiNT,HoangDH,TranMT,etal.Sam3d:Segmentanythingmodelinvolumetricmedicalimages[J].arXivpreprintarXiv:2309.03493,2023.【开源】本文提出的SAM3D模型是针对三维体积医学图像分割的一种新方法。其核心在于将“分割任何事物”(SAM)模型的预训练编码器与一个轻量级的3D解码器相结合。与传统的
- U-Net——第一课
湘溶溶
分割深度学习人工智能深度学习学习python
一.论文研究背景、成果及意义二、unet论文结构三、算法架构一.论文研究背景、成果及意义医学图像分割是医学图像处理与分析领域的复杂而关键的步骤,目的是将医学图像中具有某些特殊含义的部分分割出来,并提取相关特征,为临床诊疗和病理学研究提供可靠的依据,辅助医生作出更为准确的诊断。①处理对象:各种不同成像机理的医学影像,主要有X-射线成像(X-CT)、核磁共振成像(MRI)、核医学成像(NMI)和超声波
- 【论文阅读笔记】Prompt Tuning for Parameter-efficient Medical Image Segmentation
cskywit
医学图像分割prompts论文阅读笔记prompt
FischerM,BartlerA,YangB.Prompttuningforparameter-efficientmedicalimagesegmentation[J].MedicalImageAnalysis,2024,91:103024.【开源】【核心思想】本文的核心思想是提出了一种用于医学图像分割的参数高效的提示调整(PromptTuning)方法。这种方法基于预训练的神经网络,通过插入可
- 基于 Level set 方法的医学图像分割
凌峰的博客
计算机视觉人工智能图像处理
摘要医学图像分割是计算机辅助诊断系统设计中的关键技术。对于医学图像分割问题,它一般可分为两部分:(l)图像中特定目标区域(器官或组织)的识别;(2)目标区域完整性的描述与提取。相比于其他图像,医学图像的复杂性和多样性,使得传统的基于底层图像信息的分割方法很难取得好的分割结果,而结合了高层视觉先验知识和图像底层信息的主动轮廓模型,符合人类视觉认知事物的一般规律,在计算机辅助诊断中得到了广泛的应用。水
- MedSegDiff: Medical Image Segmentation withDiffusion Probabilistic Model
我在努力学习分割(禁止说我水平差)
神经网络
MedSegDiff:基于扩散概率模型的医学图像分割摘要:扩散概率模型(Diffusionprobabilisticmodel,DPM)是近年来计算机视觉研究的热点之一。它在Imagen、LatentDiffusionModels和StableDiffusion等图像生成应用中表现出了令人印象深刻的生成能力,引起了社区的广泛讨论。最近的许多研究还发现,它在许多其他视觉任务中也很有用,比如图像去模糊
- SESV:通过预测和纠错实现精确的医学图像分割
火柴狗
目标检测人工智能计算机视觉学习生成对抗网络
SESV:AccurateMedicalImageSegmentationbyPredictingandCorrectingErrorsSESV:通过预测和纠错实现精确的医学图像分割背景贡献实验方法ThinkingSESV:通过预测和纠错实现精确的医学图像分割286IEEETRANSACTIONSONMEDICALIMAGING,VOL.40,NO.1,JANUARY2021背景医学图像分割是计算
- 医学图像分割:UNet++
ronghuaiyang
计算机视觉机器学习深度学习python人工智能
点击上方“AI公园”,关注公众号,选择加“星标“或“置顶”作者:Jingles(HongJing)编译:ronghuaiyang导读使用一系列的网格状的密集跳跃路径来提升分割的准确性。在这篇文章中,我们将探索UNet++:ANestedU-NetArchitectureforMedicalImageSegmentation这篇文章,作者是亚利桑那州立大学的Zhou等人。本文是U-Net的延续,我们
- 从入门到精通UNet: 让你快速掌握图像分割算法
忆~遂愿
算法python深度学习神经网络图像处理数据分析语言模型
文章目录一、UNet算法简介1.1什么是UNet算法1.2UNet的优缺点1.3UNet在图像分割领域的应用二、准备工作2.1Python环境配置2.2相关库的安装三、数据处理3.1数据的获取与预处理3.2数据的可视化与分析四、网络结构五、训练模型5.1模型训练流程5.2模型评估指标5.3模型优化方法六、基于UNet的医学图像分割实战案例七、总结与展望7.1UNet的未来发展7.2学习建议由于工作
- 具有置信度学习的困难感知注意力网络用于医学图像分割
火柴狗
学习生成对抗网络神经网络计算机视觉人工智能
Difficulty-AwareAttentionNetworkwithConfidenceLearningforMedicalImageSegmentation具有置信度学习的困难感知注意力网络用于医学图像分割背景贡献难点:实验方法分割网络SegmentationNetwork(分割网络)FullyConvolutionalConfidenceLearning(全卷积的置信度学习网络)Relax
- UNet、U²Net医学图像分割网络
shuyeah
网络UNet网络
UNet网络结构对于医学图像的分割任务,这里使用UNet网络实现CT影响的病灶区域分割任务。记一篇学习笔记。1、UNet网络结构原始图片大小为(512,512),根据CT数据像素值分布的特征,对于image保留[-1024,1024]范围内的像素,并归一化处理到[0,1];对于image和mask,原始数据的大小为(h,w)(512,512),在h,w维度按照比例缩小为(320,320),并且在h
- Uncertainty-guided dual-views for semi-supervised volumetric medical image segmentation
Rad1ant_up
Uncertainty计算机视觉深度学习图像处理
本篇文章发表于NatureMachineIntelligence2023。文章链接:Uncertainty-guideddual-viewsforsemi-supervisedvolumetricmedicalimagesegmentation|NatureMachineIntelligence一、概述1.Backgroundandmotivation医学图像分割是疾病诊断、治疗规划的基石(bui
- RT-DETR改进策略:AAAI 2024 最新的轴向注意力| 即插即用,改进首选|全网首发,包含数据集和代码,开箱即用!
静静AI学堂
RT-DETR实战与改进手册目标检测人工智能计算机视觉深度学习
摘要本文提出了一种名为Multi-scaleCross-axisAttention(MCA)的方法,用于解决医学图像分割中的多尺度信息和长距离依赖性问题。该方法基于高效轴向注意力,通过计算两个平行轴向注意力之间的双向交叉注意力,更好地捕获全局信息。为了处理病变区域或器官的个体尺寸和形状的显著变化,我们还在每个轴向注意力路径中使用多个具有不同内核大小的条形卷积,以提高编码空间信息的效率。我们将提出的
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D