itk中的图像分割算法(二)

今天要介绍的是经典的自动化阈值分割算法--Otsu,中文叫做大津算法(哎,就是日本的大津发明的这个算法,最烦这些翻译过来的鬼名字,云里雾里,直接叫最大类间方差法多好~)。
itk中的图像分割算法(二)_第1张图片
itk中提供的类:itkOtsuThresholdImageFilter
用法:
typedef itk::OtsuThresholdImageFilter  FilterType;
filter->SetInput( input_data );
filter->SetNumberOfHistogramBins (atoi(argv[3]));//这个参数很重要
filter->Update();
std::cout << "Computed Threshold is: " << filter->GetThreshold() << std::endl;
output_data = filter->GetOutput();
接下来带大家看源码:
0.include头文件
#include "itkBinaryThresholdImageFilter.h"//otsu的本质就是二值化图像
#include "itkOtsuThresholdImageCalculator.h"//这里有个鬼???
1.私有变量
  InputPixelType      m_Threshold;
  OutputPixelType     m_InsideValue;
  OutputPixelType     m_OutsideValue;
  unsigned long       m_NumberOfHistogramBins;
2.数据生成方法
template
void
OtsuThresholdImageFilter
::GenerateData()
{
  typename ProgressAccumulator::Pointer progress = ProgressAccumulator::New();//这部分照旧不看
  progress->SetMiniPipelineFilter(this);

  // Compute the Otsu Threshold for the input image 往这儿看@_@!!关键部分在这儿
//这个类的重点就是计算出一个阈值:otsu->GetThreshold();
  typename OtsuThresholdImageCalculator::Pointer otsu =
    OtsuThresholdImageCalculator::New();
  otsu->SetImage (this->GetInput());
  otsu->SetNumberOfHistogramBins (m_NumberOfHistogramBins);
  otsu->Compute();
  m_Threshold = otsu->GetThreshold();

  typename BinaryThresholdImageFilter::Pointer threshold =
    BinaryThresholdImageFilter::New();

  progress->RegisterInternalFilter(threshold,.5f);
  threshold->GraftOutput (this->GetOutput());
  threshold->SetInput (this->GetInput());
  threshold->SetLowerThreshold(NumericTraits::NonpositiveMin());
  threshold->SetUpperThreshold(otsu->GetThreshold());
  threshold->SetInsideValue (m_InsideValue);
  threshold->SetOutsideValue (m_OutsideValue);
  threshold->Update();

  this->GraftOutput(threshold->GetOutput());
}
3.真相,,原来itkOtsuThresholdImageFilter只是个画皮呀。。。
用法:
typedef itk::OtsuThresholdImageCalculator  CalculatorType;
    CalculatorType::Pointer calculator = CalculatorType::New();
    calculator->SetImage(image);
    calculator->SetNumberOfHistogramBins( 64);
    calculator->Compute();
    std::cout << "calculator: " << calculator;
    std::cout << "NumberOfHistogramBins: " << calculator->GetNumberOfHistogramBins();
    short thresholdResult = calculator->GetThreshold();
    std::cout << "The threshold intensity value is : " << thresholdResult << std::endl;
4.深入解析OtsuThresholdImageCalculator计算方法,,,有点长
/*
 * Compute the Otsu's threshold
 */
template
void
OtsuThresholdImageCalculator
::Compute(void)
{

  unsigned int j;

  if ( !m_Image ) { return; } //防爆代码
  if( !m_RegionSetByUser )//是否人工输入计算区域
    {
    m_Region = m_Image->GetRequestedRegion();//false的话,就获取整个图像区域
    }

  double totalPixels = (double) m_Region.GetNumberOfPixels();//获取图像的像素个数
  if ( totalPixels == 0 ) { return; }//防爆代码


  // compute image max and min //获取图像像素灰度的最大值和最小值
  typedef MinimumMaximumImageCalculator RangeCalculator;//最大最小值计算器。。。
  typename RangeCalculator::Pointer rangeCalculator = RangeCalculator::New();
  rangeCalculator->SetImage( m_Image );
  rangeCalculator->Compute();

  PixelType imageMin = rangeCalculator->GetMinimum();//最小值
  PixelType imageMax = rangeCalculator->GetMaximum();//最大值

  if ( imageMin >= imageMax )//两值相等时,那个大于没什么用,不过老鸟都会这么写,安全性
    {
    m_Threshold = imageMin;//直接将最小值当作结果返回
    return;
    }

  // create a histogram  创建灰度直方图
  std::vector relativeFrequency;
  relativeFrequency.resize( m_NumberOfHistogramBins );
  for ( j = 0; j < m_NumberOfHistogramBins; j++ )
    {
    relativeFrequency[j] = 0.0;
    }

  double binMultiplier = (double) m_NumberOfHistogramBins /
    (double) ( imageMax - imageMin );

  typedef ImageRegionConstIteratorWithIndex Iterator;
  Iterator iter( m_Image, m_Region );

  while ( !iter.IsAtEnd() )
    {
    unsigned int binNumber;
    PixelType value = iter.Get();

    if ( value == imageMin ) 
      {
      binNumber = 0;
      }
    else
      {
      binNumber = (unsigned int) vcl_ceil((value - imageMin) * binMultiplier ) - 1;
      if ( binNumber == m_NumberOfHistogramBins ) // in case of rounding errors
        {
        binNumber -= 1;
        }
      }

    relativeFrequency[binNumber] += 1.0;
    ++iter;

    }
 
  // normalize the frequencies 将频率归一化,或者标准化
  double totalMean = 0.0;
  for ( j = 0; j < m_NumberOfHistogramBins; j++ )
    {
    relativeFrequency[j] /= totalPixels;
    totalMean += (j+1) * relativeFrequency[j];
    }


  // compute Otsu's threshold by maximizing the between-class
  // variance
  double freqLeft = relativeFrequency[0];
  double meanLeft = 1.0;
  double meanRight = ( totalMean - freqLeft ) / ( 1.0 - freqLeft );

  double maxVarBetween = freqLeft * ( 1.0 - freqLeft ) *
    vnl_math_sqr( meanLeft - meanRight );
  int maxBinNumber = 0;

  double freqLeftOld = freqLeft;
  double meanLeftOld = meanLeft;

  for ( j = 1; j < m_NumberOfHistogramBins; j++ )
    {
    freqLeft += relativeFrequency[j];
    meanLeft = ( meanLeftOld * freqLeftOld + 
                 (j+1) * relativeFrequency[j] ) / freqLeft;
    if (freqLeft == 1.0)
      {  
      meanRight = 0.0;
      }
    else
      {
      meanRight = ( totalMean - meanLeft * freqLeft ) / 
        ( 1.0 - freqLeft );
      }
    double varBetween = freqLeft * ( 1.0 - freqLeft ) *
      vnl_math_sqr( meanLeft - meanRight );
   
    if ( varBetween > maxVarBetween )
      {
      maxVarBetween = varBetween;
      maxBinNumber = j;
      }

    // cache old values
    freqLeftOld = freqLeft;
    meanLeftOld = meanLeft; 

    } 

  m_Threshold = static_cast( imageMin + 
                                        ( maxBinNumber + 1 ) / binMultiplier );
}
5.自己实现一个otsu,其实很简单么,没多少内容。
int Otsu(ImageType2D *src)  
{  
	ImageType2D::RegionType inputRegion = src->GetLargestPossibleRegion();
	ImageType2D::SizeType size = inputRegion.GetSize();

    int height	= size[1];  
    int width	= size[0];      

	//histogram 
	float histogram[256] = {0}; 
	typedef itk::ImageRegionIteratorWithIndex   FieldIterator;
	FieldIterator fieldIter( src, src->GetLargestPossibleRegion());
	fieldIter.GoToBegin();
	ImageType2D::IndexType index;
	while( !fieldIter.IsAtEnd()  )
	{
		index=fieldIter.GetIndex();
		unsigned char p = src->GetPixel(index);
		histogram[p]++;
		++fieldIter;
	}

    //normalize histogram & average pixel value 
    int size_ = height * width;  
    float u =0;
    for(int i = 0; i < 256; i++)
    {  
        histogram[i] = histogram[i] / size_;  
        u += i * histogram[i];  //整幅图像的平均灰度
    }  

    int threshold;    
    float maxVariance=0;  
    float w0 = 0, avgValue  = 0;
    for(int i = 0; i < 256; i++) 
    {  
        w0 += histogram[i];  //假设当前灰度i为阈值, 0~i 灰度像素所占整幅图像的比例即前景比例
        avgValue  += i * histogram[i]; //avgValue/w0 = u0

        float t = avgValue/w0 - u;  //t=u0-u
        float variance = t * t * w0 /(1 - w0);  
        if(variance > maxVariance) 
        {  
            maxVariance = variance;  
            threshold = i;  
        }  
    } 
    return threshold;  
} 
itk中的图像分割算法(二)_第2张图片


最近一直在忙,这是这个月的第一篇,惭愧。
如何才能战无不胜???
自己需要熟悉还很多,合理安排时间和精力,继续吧~!

参考文献:
1.http://blog.csdn.net/u011285477/article/details/52004513





你可能感兴趣的:(ITK医学图像处理)