Tetrahedron:
写这个题时候,我和我的队友三人核对了一下题意后就开始写了,一开始对样例呢么大不敢相信,但是猜测可能是分数的缘故,然后推了一下,用逆元求了下结果确实和样例一模一样,然后有讨论了一下规律,最后我们三人得到规律 E ( n ) = 3 ( s u m ( 1 / 1 ∗ 1 + 1 / 2 ∗ 2 + . . . . 1 / n ∗ n ) / n ) E(n)=3(sum(1/1*1+1/2*2+....1/n*n)/n)%mod E(n)=3(sum(1/1∗1+1/2∗2+....1/n∗n)/n),但我第一发TLE了,我很奇怪感觉O(N)的时间复杂度应该不会T啊,感觉有可能爆了乘法,我又写了龟速乘,又T了,之后和队友讨论了一下,算了一下时间复杂度,然后预处理了一波就A了,早知道直接测一下最大样例了。
参考代码:
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
typedef long long ll;
//#define ll long long
const ll N = 1e3 + 5;
const ll maxn = 6e6 + 20;
const ll mod = 998244353;
ll inv[maxn], vis[maxn], dis[maxn];
ll fac[maxn], a[maxn], q[maxn];
vector<ll> vec;
//typedef pair p;
//priority_queue, greater
> m;
ll max(ll a, ll b) { return a > b ? a : b; }
ll min(ll a, ll b) { return a < b ? a : b; }
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
ll lcm(ll a, ll b) { return a * b / gcd(a, b); }
map<ll, ll> mp;
ll ksm(ll a, ll b)
{
ll ans = 1;
while (b)
{
if (b & 1)
ans = (ans * a) % mod;
a = (a * a) % mod;
b >>= 1;
}
return ans;
}
ll dp[maxn];
string p = "abacaba";
void init()
{
ll ans = 0;
for (ll i = 1; i <= 6000001; i++)
{
ll x = ((i * i) % mod);
ans = (ans + (ksm(x, mod - 2) % mod));
dp[i] = (ans * 3) % mod;
}
}
int main()
{
// ios::sync_with_stdio(false);
// cin.tie(0);
ll t;
// ll k = 1;
init();
scanf("%lld", &t);
while (t--)
{
ll n;
scanf("%lld", &n);
printf("%lld\n", dp[n] * ksm(n, mod - 2) % mod);
}
}
Paperfolding:
这题也是个求期望的题,我们没找到规律,写了快两个小时,我撕了一垃圾桶的纸,还是没找到,然后就补一下。
下面给出规律和公式推到:
参考代码:
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
typedef long long ll;
//#define ll long long
const ll N = 1e3 + 5;
const ll maxn = 6e6 + 20;
const ll mod = 998244353;
ll inv[maxn], vis[maxn], dis[maxn];
ll fac[maxn], a[maxn], q[maxn];
vector<ll> vec;
//typedef pair p;
//priority_queue, greater
> m;
ll max(ll a, ll b) { return a > b ? a : b; }
ll min(ll a, ll b) { return a < b ? a : b; }
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
ll lcm(ll a, ll b) { return a * b / gcd(a, b); }
map<ll, ll> mp;
ll ksm(ll a, ll b)
{
ll ans = 1;
while (b)
{
if (b & 1)
ans = (ans * a) % mod;
a = (a * a) % mod;
b >>= 1;
}
return ans;
}
ll dp[maxn];
string p = "abacaba";
void init()
{
ll ans = 0;
for (ll i = 1; i <= 6000001; i++)
{
ll x = ((i * i) % mod);
ans = (ans + (ksm(x, mod - 2) % mod));
dp[i] = (ans * 3) % mod;
}
}
int main()
{
// ios::sync_with_stdio(false);
// cin.tie(0);
ll t;
// ll k = 1;
//init();
scanf("%lld", &t);
while (t--)
{
ll n;
scanf("%lld", &n);
ll ans = (1ll + ksm(2, n) + (2 * ksm(3, n) % mod) * ksm(ksm(2, mod - 2), n) % mod) % mod;
printf("%lld\n", ans);
}
}