- 【网络安全】网络安全中的离散数学
flyair_China
安全架构
一、离散数学核心知识点与网络安全映射1.数论(NumberTheory)知识点安全应用场景实例说明质因数分解RSA公钥加密大整数分解难题(2048位密钥需数万年破解)模运算Diffie-Hellman密钥交换利用(gamodp)实现安全协商欧拉定理RSA加密/解密me*d≡m(modn)保障解密还原中国剩余定理高效解密优化RSA-CRT加速解密运算达70%2.代数结构(AlgebraicStruc
- 数学中的代数数论与代数几何
AI天才研究院
计算AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
1.背景介绍在数学的众多分支中,代数数论和代数几何是两个极其重要的领域。代数数论,顾名思义,是研究数论问题的代数方法,主要研究整数、有理数、代数数等的性质。而代数几何则是研究零点集的代数方法,主要研究多项式方程和代数方程组的解的几何性质。这两个领域虽然看似独立,但实际上有着深厚的内在联系,它们的交叉研究已经产生了许多深远的理论和应用。2.核心概念与联系2.1代数数论代数数论的核心概念是代数数,即满
- 三生原理m 值的五周期循环是人为设定还是数论内在要求?
葫三生
三生学派算法人工智能机器学习量子计算数学建模
AI辅助创作:三AI辅助创作:生原理中m值的五周期循环(取值范围{0,1,2,3,4})本质上是数论内在要求,其必要性源于素数分布的周期性约束与代数结构的不可突破性,但部分特性受限于当前数学框架的观测维度。具体辩证关系如下:✅一、数论内在性的核心证据模周期对称性约束当m突破5周期(如m=5)时,三生原理的素数生成公式p=3(2n+1)+2(2n+m+1)必然生成合数:例如n=0,m=
- 【Algo】常见组合类数列
CodeWithMe
C/C++c++c语言算法
文章目录常见组合类数列1常见递推/组合类数列1.1基础递推类数列1.2组合数学数列1.3数论/函数类数列1.4图论/路径问题相关数列1.5算法和结构设计常用数列2示例:有规律数列前10项对比表3参考建议常见组合类数列介绍一些常见具有明显数学规律或递推关系的常见组合类数列。1常见递推/组合类数列1.1基础递推类数列Fibonacci数列F(n)=F(n-1)+F(n-2),F(0)=0,F(1)=1
- 数论:互质数的个数
Zephyrtoria
数据结构与算法java算法数论
数论:互质数的个数互质数的个数www.acwing.com/problem/content/4971/a=p1a1p2a2...pmama=p_{1}^{a_1}p_{2}^{a_2}...p_{m}^{a_m}a=p1a1p2a2...pmamab=p1a1bp2a2b...pmamba^{b}=p_{1}^{a_1b}p_{2}^{a_2b}...p_{m}^{a_mb}ab=p1a1bp2a
- 素数5在三生原理和费马数公式中均起临界作用的原因?
葫三生
三生学派机器学习人工智能算法量子计算数学建模
AI辅助创作:问答一:在数学理论中,素数5的“临界作用”在《三生原理》与费马数公式中均具有深刻的数学内涵,这种共性源于其独特的数论性质、结构对称性及计算阈值意义。以下从三个维度展开分析:一、5在《三生原理》中的临界性:阴阳平衡与生成韵律的转折点《三生原理》作为融合《周易》哲学的数论体系,其核心是将“三生万物”动态生成思想转化为素数分布的参数化模型。5的临界性体现在:最小满足阴阳参数联动的奇素数《三
- 算法-数论
cx_2023
算法c++开发语言
C-小红的数组查询(二)_牛客周赛Round95思路:不难看出a数组是有循环的d=3,p=4时,a数组:1、0、3、2、1、0、3、2.......最小循环节为4,即最多4种不同的数d=4,p=6时,a数组:1、5、3、1、5、3.......最小循环节为3d=4,p=10时,a数组:1、5、9、3、7、1、5、9、3、7.......最小循环节为5可以得出,最小循环节T=p/gcd(d,p)an
- 质数表的构建
羊儿~
c算法数据结构c++
前言最近,有很多人问我如何既能保证时间复杂度低又能正确的打出质数表,那么今天,我就给各位读者带来了几种打出质数表的(打表)的方法。1.质数的介绍质数,又称素数,是指在大于1的自然数中,除了1和它本身外,不能被其他自然数整除的数。换句话说,质数只有两个正因数:1和它自己。例如,2、3、5、7、11等都是质数。2是最小的质数,也是唯一的偶质数,其他质数都是奇数。质数在数学中具有重要地位,尤其在数论领域
- 使用MATLAB输出给定范围内的所有质数
士兵突击许三多
matlab基础matlab
使用MATLAB输出给定范围内的所有质数后续我将给出一些运用案例在计算机科学与数学中,质数是指仅能被1和其本身整除的自然数,例如2、3、5、7、11等。质数在数论和密码学中有着重要的应用。今天,我们将介绍如何使用MATLAB来生成并输出所有质数。什么是质数?质数是大于1的自然数,且只能被1和它自己整除。例如:2、3、5、7、11、13等都是质数。4、6、8、9、10等不是质数,它们都有其他因子。目
- 巧用数论与动态规划破解包子凑数问题
EtherWanderer
数据结构与算法蓝桥杯职场和发展
题目描述小明想知道包子铺用给定的蒸笼规格能凑出多少种无法组成的包子数目。若无法组成的数目无限,输出INF。输入格式第一行为整数NNN(蒸笼种数)接下来NNN行每行一个整数AiA_iAi(每种蒸笼的包子数)输出格式无法凑出的数目个数,若无限则输出INF问题分析关键条件若所有AiA_iAi的最大公约数(GCD)不为1,则无法组成的数目无限。例如,当所有数均为偶数时,无法组成任何奇数。动态规划思路当GC
- 解析数论基础:第二十四章 (s)与L(s,x)的阶估计
AI天才研究院
AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
解析数论基础:第二十四章(s)与L(s,x)的阶估计作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来数论是数学的一个分支,研究整数和它们的性质。在数论中,(s)函数和L(s,x)函数是两个重要的函数,它们在解析数论、数论分析以及许多数学物理领域都有着广泛的应用。特别是在素数分布、素数定理以及黎曼ζ函数的研究中,(s)函数和
- 探索 C++ 中的数论世界:从基础到实践
光の
java算法开发语言搜索算法
一、引言数论作为数学的核心分支,在计算机科学领域展现出强大的生命力。无论是密码学中的RSA加密算法,还是编程竞赛中的算法优化,数论都扮演着不可或缺的角色。C++凭借其高效的性能和底层控制能力,成为实现数论算法的理想选择。本文将带您走进C++数论的世界,从基础概念到实际应用,逐步揭开数论的神秘面纱。二、数论基础概念与C++实现2.1质数判定质数是大于1且只能被1和自身整除的整数。在C++中,我们可以
- USST新生训练赛3KLMN
Fighter_sky
题解C++acm
题解前言题解部分KPashmakandParmida'sproblem(1800)题目大意题解参考代码LPashmakandGraph(1900)题目大意题解参考代码MLuckyChains(1600)题目大意题解参考代码NManipulatingHistory(1600)题目大意题解参考代码前言KLMN是数据结构(线段树/树状数组)+dp+数论+结论唐题题解部分KPashmakandParmid
- 数论:数学王国的密码学
菜鸟破茧计划
密码学
在计算机科学的世界里,数论就像是一把神奇的钥匙,能够解开密码学、算法优化、随机数生成等诸多领域的谜题。作为C++算法小白,今天我就带大家一起走进数论的奇妙世界,探索其中的奥秘。什么是数论?数论是纯粹数学的分支之一,主要研究整数的性质。在计算机科学中,数论尤其在密码学、算法设计和计算机安全等领域有着广泛的应用。数论中的一些基本概念包括质数、最大公约数、模运算等。数论的基本概念与代码实现质数判定质数是
- 数论专题R1(线性筛专题)
JL24zyl
c++
目录A反素数加强版B约数积函数Ch(n)Dg(n)E神必的函数F球与盒子总结A反素数加强版时空限制1s,32MB问题描述如果一个大于等于1的正整数n,满足所有小于n且大于等于1的所有正整数的约数个数都小于n的约数个数,则n是一个反素数。请你计算不大于n的最大反素数。输入格式第一行输入数据组数T,每组数据输入1个正整数n。输出格式对每组数据,输出不大于n的最大反素数。数据范围1=1)的约数个数为(r
- 为什么哈希加密后破解怎么难?单向函数;密码学的数学原理:从理论到实践
小胡说技书
#数据安全技术哈希算法密码学算法单向函数数据安全安全信息安全
文章目录一、单向函数的数学基础1.1单向函数的数学定义1.2复杂度理论视角1.3数论在密码学中的应用二、哈希函数的数学原理与不可逆性2.1从信息论角度理解哈希不可逆性2.2碰撞抵抗的数学分析2.3单向压缩函数与雪崩效应三、非对称密码系统的数学基础3.1RSA算法的数学原理3.2椭圆曲线加密的几何解析四、密码学随机性与熵的数学原理4.1随机性与熵的量化4.2伪随机数生成器的数学模型4.3加盐哈希的数
- “即时取模”的快读 → 数论
hnjzsyjyj
信息学竞赛#算法数学基础#快读“即时取模”的快读快读
【“即时取模”的快读】●“即时取模”的快读是一种在输入大整数时直接进行取模运算的优化技术,常用于处理需要大数运算但最终结果需取模的场景(如数论题目)。其核心思想是在逐位读取数字时同步计算模值,避免存储完整的大数。intread(){//fastreadintx=0,f=1;charc=getchar();while(c'9'){//!isdigit(c)if(c=='-')f=-1;c=getch
- 【算法笔记】ACM数论基础模板
寂空_
算法笔记算法笔记c++
目录几个定理唯一分解定理鸽巢原理(抽屉原理)麦乐鸡定理哥德巴赫猜想容斥原理例题二进制枚举解dfs解裴蜀定理例题代码最大公约数、最小公倍数最大公约数最小公倍数质数试除法判断质数分解质因数筛质数朴素筛法(埃氏筛法)线性筛法(欧拉筛法)约数试除法求约数求约数个数一个数求约数个数求1~n所有数的约数个数O(nlogn)O(nlogn)O(nlogn)筛法O(n)O(n)O(n)筛法约数之和一个数求约数之和
- 扩展欧几里得算法简介及代码实现
hnjzsyjyj
信息学竞赛#算法数学基础扩展欧几里得算法裴蜀定理
【扩展欧几里得算法简介】●扩展欧几里得算法(ExtendedEuclideanAlgorithm)是欧几里得算法的扩展版本,不仅能计算两个整数的最大公约数(GCD),还能找到满足贝祖等式(Bézout'sIdentity)ax+by=gcd(a,b)的整数解x和y。它在数论、密码学等领域有重要应用,例如求解模的逆元、求解线性同余方程等。●扩展欧几里得算法求ax+by=gcd(a,b)特解的方法如下
- 《夜深人静写算法》数论篇 - (10) 扩展欧几里得定理
英雄哪里出来
《夜深人静写算法》数论篇算法初等数论扩展欧几里得定理
前言 通过扩展欧几里得定理,利用扩展欧几里得算法,可以求解线性同余方程。 那么什么是线性同余方程?什么是扩展欧几里得定理?什么是扩展欧几里得算法?接下来的几篇文章会来讲解一下这几个概念。一、扩展欧几里得定理1、定理概述 对于不都为零的整数aaa和b
- 【ICPC】The 2024 ICPC Kunming Invitational Contest E
浅慕Antonio
算法竞赛开发语言c++算法
RelearnthroughReview#数论#枚举#gcd题目描述Givenanintegersequencea1,a2,⋯ ,ana_1,a_2,\cdots,a_na1,a2,⋯,anoflengthnnnandanon-negativeintegerkkk,youcanperformthefollowingoperationatmostonce:Choosetwointegerslllan
- 初等数论 --- 同余、欧拉定理、费马小定理、求逆元
chstor
算法笔记
文章目录一、同余二、欧拉定理三、费马小定理四、扩展欧几里得算法4.1裴蜀定理五、一元线性同余方程六、逆元求逆元方法一、扩展欧几里得算法求逆元方法二、费马小定理加快速幂一、同余定义当两个整数a,b除以同一个正整数m,若得相同余数,则二整数同余。记为:a≡b(mod m)当两个整数a,b除以同一个正整数m,若得相同余数,则二整数同余。记为:a\equivb(\modm)当两个整数a,b除以同一个正整
- 初等数论 课堂笔记 第三章 -- 欧拉函数一节的若干练习
此账号已停更
初等数论数学数论
练习计算φ(60)\varphi\left(60\right)φ(60)。解 将606060写成标准分解式60=22×3×560={{2}^{2}}\times3\times560=22×3×5法一(计算过程中出现分式)φ(60)=60×(1−12)(1−13)(1−15)=60×12×23×45=16\varphi\left(60\right)=60\times\left(1-\frac{1}
- 【关于数学】感悟(附学习目录)
DataPlayerK
线性代数抽象代数概率论矩阵
一些感悟数学具有艺术美。从某种意义上来说,数学家和画家本质相同,他们都在“刻画”心目中的图景。小时候我总是在思考一个终极问题:数学是什么?我怀念那时我单纯而热烈的执着,此文章就长期记载我对数学的看法吧。2017-2020高中在读数学是不同精巧结构的集合。高中数学竞赛中,不等式/组合数学/数论中充斥着各种“限制下的精巧结构”,使得结构出现了各种各样奇妙的性质。2021-4-14大一在读数学不仅重在结
- NOIP2009提高组.Hankson的趣味题
Ayanami_Reii
算法c++笔记蓝桥杯
目录题目算法标签:数论,最大公约数,最小公倍数,约数思路代码题目200.Hankson的趣味题算法标签:数论,最大公约数,最小公倍数,约数思路因为[x,a0]=b1[x,a_0]=b_1[x,a0]=b1因此xxx一定是b1b_1b1约数,注意到,数据范围是2×1092\times10^92×109如果直接使用试除法计算约数时间复杂度是O(nn)O(n\sqrtn)O(nn)会超时,因此需要进行优
- 数论---求组合数
@松田
算法c++组合数数论
快速幂:数论-----快速幂-CSDN博客快速幂求逆元:数论----快速幂求逆元-CSDN博客筛质数:筛质数----CSDN博客求组合数I//10万组a,busingnamespacestd;constintN=2010,mod=1e9+7;intc[N][N];voidinit(){for(inti=0;i>n;while(n--){inta,b;cin>>a>>b;coutusingnames
- 线性筛法求素数(欧拉筛法)(求质数,O(n)时间复杂度)(外加求每个整数的最小质因子)(python)
不染_是非
算法pythonpython算法开发语言
前言:python中求质数的方法有好几种,这里就讲解时间复杂度最低的算法欧拉筛法,时间复杂度为O(n),这是数论中也是算法比赛中必须掌握的方法。本篇博客还会额外讲解求每个整数的最小质因子,什么是质因子?顾名思义,就是是质数的因子,求这个有什么用呢?下篇博客X的因子链(数论,python)(算术基本定理)(欧拉筛法)会给大家讲解一道例题,在例题中讲解它的用法。思路:线性筛法的整体思路是(代码里有详细
- 解析数论基础:问题的提出和进展
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
解析数论基础:问题的提出和进展作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来数论,作为数学的一个分支,自古以来就与算法和密码学紧密相连。从古代的算术运算到现代的计算机科学,数论问题始终是算法设计和理论分析的重要基础。随着计算机技术的发展,数论在加密算法、网络安全、计算机图形学、算法优化等领域发挥着越来越重要的作用。1.2
- 了解倒数的概念,乘法逆元就很好理解——解析之【逆元的概念】【逆元的求解方法】
灰阳阳
算法算法裴蜀定理欧几里得算法最大公约数逆元
目录前言一、逆元的概念1、基本定义示例1:a=3,m=7a=3,m=7a=3,m=7示例2:a=2,m=5a=2,m=5a=2,m=52、乘法逆元有什么用3、相关性质二、求解逆元的方法1、费马小定理求乘法逆元定义费马小定理求逆元的方法总结模板题2、扩展欧几里得算法求逆元定义扩展欧几里得算法求逆元的方法总结模板题3、递推公式求逆元定义递推公式的推导示例总结前言首先,下面讨论的是数论相关内容。主要研究
- 【算法】数论基础——逆元的概念与应用 python
查理零世
算法python
文章目录前言一、什么是逆元?二、逆元的存在条件三、如何计算逆元?1.扩展欧几里得算法(ExtendedEuclideanAlgorithm)2.使用费马小定理(Fermat'sLittleTheorem)四、应用场景示例:求排列数和组合数前言逆元(ModularMultiplicativeInverse)在模运算中是一个非常重要的概念,特别是在需要执行除法操作时。因为在模p的情况下,直接进行除法是
- java工厂模式
3213213333332132
java抽象工厂
工厂模式有
1、工厂方法
2、抽象工厂方法。
下面我的实现是抽象工厂方法,
给所有具体的产品类定一个通用的接口。
package 工厂模式;
/**
* 航天飞行接口
*
* @Description
* @author FuJianyong
* 2015-7-14下午02:42:05
*/
public interface SpaceF
- nginx频率限制+python测试
ronin47
nginx 频率 python
部分内容参考:http://www.abc3210.com/2013/web_04/82.shtml
首先说一下遇到这个问题是因为网站被攻击,阿里云报警,想到要限制一下访问频率,而不是限制ip(限制ip的方案稍后给出)。nginx连接资源被吃空返回状态码是502,添加本方案限制后返回599,与正常状态码区别开。步骤如下:
- java线程和线程池的使用
dyy_gusi
ThreadPoolthreadRunnabletimer
java线程和线程池
一、创建多线程的方式
java多线程很常见,如何使用多线程,如何创建线程,java中有两种方式,第一种是让自己的类实现Runnable接口,第二种是让自己的类继承Thread类。其实Thread类自己也是实现了Runnable接口。具体使用实例如下:
1、通过实现Runnable接口方式 1 2
- Linux
171815164
linux
ubuntu kernel
http://kernel.ubuntu.com/~kernel-ppa/mainline/v4.1.2-unstable/
安卓sdk代理
mirrors.neusoft.edu.cn 80
输入法和jdk
sudo apt-get install fcitx
su
- Tomcat JDBC Connection Pool
g21121
Connection
Tomcat7 抛弃了以往的DBCP 采用了新的Tomcat Jdbc Pool 作为数据库连接组件,事实上DBCP已经被Hibernate 所抛弃,因为他存在很多问题,诸如:更新缓慢,bug较多,编译问题,代码复杂等等。
Tomcat Jdbc P
- 敲代码的一点想法
永夜-极光
java随笔感想
入门学习java编程已经半年了,一路敲代码下来,现在也才1w+行代码量,也就菜鸟水准吧,但是在整个学习过程中,我一直在想,为什么很多培训老师,网上的文章都是要我们背一些代码?比如学习Arraylist的时候,教师就让我们先参考源代码写一遍,然
- jvm指令集
程序员是怎么炼成的
jvm 指令集
转自:http://blog.csdn.net/hudashi/article/details/7062675#comments
将值推送至栈顶时 const ldc push load指令
const系列
该系列命令主要负责把简单的数值类型送到栈顶。(从常量池或者局部变量push到栈顶时均使用)
0x02 &nbs
- Oracle字符集的查看查询和Oracle字符集的设置修改
aijuans
oracle
本文主要讨论以下几个部分:如何查看查询oracle字符集、 修改设置字符集以及常见的oracle utf8字符集和oracle exp 字符集问题。
一、什么是Oracle字符集
Oracle字符集是一个字节数据的解释的符号集合,有大小之分,有相互的包容关系。ORACLE 支持国家语言的体系结构允许你使用本地化语言来存储,处理,检索数据。它使数据库工具,错误消息,排序次序,日期,时间,货
- png在Ie6下透明度处理方法
antonyup_2006
css浏览器FirebugIE
由于之前到深圳现场支撑上线,当时为了解决个控件下载,我机器上的IE8老报个错,不得以把ie8卸载掉,换个Ie6,问题解决了,今天出差回来,用ie6登入另一个正在开发的系统,遇到了Png图片的问题,当然升级到ie8(ie8自带的开发人员工具调试前端页面JS之类的还是比较方便的,和FireBug一样,呵呵),这个问题就解决了,但稍微做了下这个问题的处理。
我们知道PNG是图像文件存储格式,查询资
- 表查询常用命令高级查询方法(二)
百合不是茶
oracle分页查询分组查询联合查询
----------------------------------------------------分组查询 group by having --平均工资和最高工资 select avg(sal)平均工资,max(sal) from emp ; --每个部门的平均工资和最高工资
- uploadify3.1版本参数使用详解
bijian1013
JavaScriptuploadify3.1
使用:
绑定的界面元素<input id='gallery'type='file'/>$("#gallery").uploadify({设置参数,参数如下});
设置的属性:
id: jQuery(this).attr('id'),//绑定的input的ID
langFile: 'http://ww
- 精通Oracle10编程SQL(17)使用ORACLE系统包
bijian1013
oracle数据库plsql
/*
*使用ORACLE系统包
*/
--1.DBMS_OUTPUT
--ENABLE:用于激活过程PUT,PUT_LINE,NEW_LINE,GET_LINE和GET_LINES的调用
--语法:DBMS_OUTPUT.enable(buffer_size in integer default 20000);
--DISABLE:用于禁止对过程PUT,PUT_LINE,NEW
- 【JVM一】JVM垃圾回收日志
bit1129
垃圾回收
将JVM垃圾回收的日志记录下来,对于分析垃圾回收的运行状态,进而调整内存分配(年轻代,老年代,永久代的内存分配)等是很有意义的。JVM与垃圾回收日志相关的参数包括:
-XX:+PrintGC
-XX:+PrintGCDetails
-XX:+PrintGCTimeStamps
-XX:+PrintGCDateStamps
-Xloggc
-XX:+PrintGC
通
- Toast使用
白糖_
toast
Android中的Toast是一种简易的消息提示框,toast提示框不能被用户点击,toast会根据用户设置的显示时间后自动消失。
创建Toast
两个方法创建Toast
makeText(Context context, int resId, int duration)
参数:context是toast显示在
- angular.identity
boyitech
AngularJSAngularJS API
angular.identiy 描述: 返回它第一参数的函数. 此函数多用于函数是编程. 使用方法: angular.identity(value); 参数详解: Param Type Details value
*
to be returned. 返回值: 传入的value 实例代码:
<!DOCTYPE HTML>
- java-两整数相除,求循环节
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class CircleDigitsInDivision {
/**
* 题目:求循环节,若整除则返回NULL,否则返回char*指向循环节。先写思路。函数原型:char*get_circle_digits(unsigned k,unsigned j)
- Java 日期 周 年
Chen.H
javaC++cC#
/**
* java日期操作(月末、周末等的日期操作)
*
* @author
*
*/
public class DateUtil {
/** */
/**
* 取得某天相加(减)後的那一天
*
* @param date
* @param num
*
- [高考与专业]欢迎广大高中毕业生加入自动控制与计算机应用专业
comsci
计算机
不知道现在的高校还设置这个宽口径专业没有,自动控制与计算机应用专业,我就是这个专业毕业的,这个专业的课程非常多,既要学习自动控制方面的课程,也要学习计算机专业的课程,对数学也要求比较高.....如果有这个专业,欢迎大家报考...毕业出来之后,就业的途径非常广.....
以后
- 分层查询(Hierarchical Queries)
daizj
oracle递归查询层次查询
Hierarchical Queries
If a table contains hierarchical data, then you can select rows in a hierarchical order using the hierarchical query clause:
hierarchical_query_clause::=
start with condi
- 数据迁移
daysinsun
数据迁移
最近公司在重构一个医疗系统,原来的系统是两个.Net系统,现需要重构到java中。数据库分别为SQL Server和Mysql,现需要将数据库统一为Hana数据库,发现了几个问题,但最后通过努力都解决了。
1、原本通过Hana的数据迁移工具把数据是可以迁移过去的,在MySQl里面的字段为TEXT类型的到Hana里面就存储不了了,最后不得不更改为clob。
2、在数据插入的时候有些字段特别长
- C语言学习二进制的表示示例
dcj3sjt126com
cbasic
进制的表示示例
# include <stdio.h>
int main(void)
{
int i = 0x32C;
printf("i = %d\n", i);
/*
printf的用法
%d表示以十进制输出
%x或%X表示以十六进制的输出
%o表示以八进制输出
*/
return 0;
}
- NsTimer 和 UITableViewCell 之间的控制
dcj3sjt126com
ios
情况是这样的:
一个UITableView, 每个Cell的内容是我自定义的 viewA viewA上面有很多的动画, 我需要添加NSTimer来做动画, 由于TableView的复用机制, 我添加的动画会不断开启, 没有停止, 动画会执行越来越多.
解决办法:
在配置cell的时候开始动画, 然后在cell结束显示的时候停止动画
查找cell结束显示的代理
- MySql中case when then 的使用
fanxiaolong
casewhenthenend
select "主键", "项目编号", "项目名称","项目创建时间", "项目状态","部门名称","创建人"
union
(select
pp.id as "主键",
pp.project_number as &
- Ehcache(01)——简介、基本操作
234390216
cacheehcache简介CacheManagercrud
Ehcache简介
目录
1 CacheManager
1.1 构造方法构建
1.2 静态方法构建
2 Cache
2.1&
- 最容易懂的javascript闭包学习入门
jackyrong
JavaScript
http://www.ruanyifeng.com/blog/2009/08/learning_javascript_closures.html
闭包(closure)是Javascript语言的一个难点,也是它的特色,很多高级应用都要依靠闭包实现。
下面就是我的学习笔记,对于Javascript初学者应该是很有用的。
一、变量的作用域
要理解闭包,首先必须理解Javascript特殊
- 提升网站转化率的四步优化方案
php教程分享
数据结构PHP数据挖掘Google活动
网站开发完成后,我们在进行网站优化最关键的问题就是如何提高整体的转化率,这也是营销策略里最最重要的方面之一,并且也是网站综合运营实例的结果。文中分享了四大优化策略:调查、研究、优化、评估,这四大策略可以很好地帮助用户设计出高效的优化方案。
PHP开发的网站优化一个网站最关键和棘手的是,如何提高整体的转化率,这是任何营销策略里最重要的方面之一,而提升网站转化率是网站综合运营实力的结果。今天,我就分
- web开发里什么是HTML5的WebSocket?
naruto1990
Webhtml5浏览器socket
当前火起来的HTML5语言里面,很多学者们都还没有完全了解这语言的效果情况,我最喜欢的Web开发技术就是正迅速变得流行的 WebSocket API。WebSocket 提供了一个受欢迎的技术,以替代我们过去几年一直在用的Ajax技术。这个新的API提供了一个方法,从客户端使用简单的语法有效地推动消息到服务器。让我们看一看6个HTML5教程介绍里 的 WebSocket API:它可用于客户端、服
- Socket初步编程——简单实现群聊
Everyday都不同
socket网络编程初步认识
初次接触到socket网络编程,也参考了网络上众前辈的文章。尝试自己也写了一下,记录下过程吧:
服务端:(接收客户端消息并把它们打印出来)
public class SocketServer {
private List<Socket> socketList = new ArrayList<Socket>();
public s
- 面试:Hashtable与HashMap的区别(结合线程)
toknowme
昨天去了某钱公司面试,面试过程中被问道
Hashtable与HashMap的区别?当时就是回答了一点,Hashtable是线程安全的,HashMap是线程不安全的,说白了,就是Hashtable是的同步的,HashMap不是同步的,需要额外的处理一下。
今天就动手写了一个例子,直接看代码吧
package com.learn.lesson001;
import java
- MVC设计模式的总结
xp9802
设计模式mvc框架IOC
随着Web应用的商业逻辑包含逐渐复杂的公式分析计算、决策支持等,使客户机越
来越不堪重负,因此将系统的商业分离出来。单独形成一部分,这样三层结构产生了。
其中‘层’是逻辑上的划分。
三层体系结构是将整个系统划分为如图2.1所示的结构[3]
(1)表现层(Presentation layer):包含表示代码、用户交互GUI、数据验证。
该层用于向客户端用户提供GUI交互,它允许用户