- (简介)因果中介分析(Causal Mediation Analysis)
音程
人工智能人工智能
因果中介分析(CausalMediationAnalysis)是因果推断领域的一个重要方法,用于研究某个自变量(如干预措施或处理因素)对因变量(结果)的影响是否通过某个中介变量(Mediator)间接产生作用。它旨在分解总效应(TotalEffect)为直接效应(DirectEffect)和间接效应(IndirectEffect),从而揭示因果关系的潜在机制。核心概念:变量定义:自变量(X):研究
- “相关分析”
不解风情的老妖怪哎
数据分析学习笔记数据分析大数据
一、相关分析的核心概念1.定义(1)衡量两个或多个变量之间的线性或单调关系的强度和方向(正/负相关)。(2)注意:相关性≠因果关系。2.相关系数的范围(1)取值范围为[-1,1]:1:完全正相关-1:完全负相关0:无线性相关3.应用场景(1)探索变量间的潜在关系(如收入与消费水平、广告投入与销售额)。(2)辅助特征选择(如剔除高度相关的变量,避免多重共线性)。二、常用相关系数及方法1.Pearso
- 系统思考:怎么样培养系统思考的能力?
陈思杰系统思考Jason
系统思考
培养系统思考的能力,是构建自己深刻洞察力的一个重要方式。我们应该时刻提醒自己:这个世界不是简单的因果关系,理解事物最重要的方式是对事物之间的关系进行思考。这样,我们才能在芸芸众生中形成自己的独到见解。比如;为什么在很多领域都会出现二八定律?比如,20%的人拥有80%的钱,20%的客户带来80%的利润,20%的品牌占有80%的市场。为什么这个世界不是五五分,而是二八分?甚至一个池塘里面,即使刚开始你
- 循环因果关系与线性因果关系
CoderIsArt
控制系统原理与实现因果关系
循环因果关系和线性因果关系是两种不同的因果解释框架,它们在描述系统或现象中因果关系的结构和动态性上存在显著差异。以下是它们的核心区别和特点:1.线性因果关系(LinearCausality)•定义:因果关系呈现单向、链式的结构,即原因(A)直接导致结果(B),且这种影响是单向的、不可逆的。公式表示:A→B→C•特点:◦单向性:因果箭头方向固定,例如“吸烟(A)导致肺癌(B)”是一个典型的线性因果陈
- 【数据挖掘】动态正则格兰杰因果学习方法
hans汉斯
论文荐读数据挖掘学习方法人工智能大数据python算法动态规划
导读在医学和金融学等实际领域中,了解动态系统中的底层结构关系对于调节系统中的变量和预测系统未来状态至关重要。系统的动态变化会生成时间序列数据,通过观察时间序列数据可以分析系统的底层结构。格兰杰因果关系分析方法可以应用于一维或多维时间序列系统,现有的方法以组件式的建模方式分析每个系统变量特定的因果关系,受限于时间方向的强假设性和组件模型的单一性,其无法准确地挖掘出时间序列中的因果关系结构。本文提出了
- 从0开始学习R语言--Day20--Wilcoxon秩和检验
Chef_Chen
学习r语言开发语言
Wilcoxon秩和检验当数据不满足正态分布时,我们常常会苦恼于如何处理数据。即使是用缩进的方法,把数据缩进到(1-99%)或(1-95%)的范围内,假如有一些数据点集中在数据分布的尾端,这依然会影响到我们对数据特点的判断,尤其是需要探寻数据组之间的联系或关系的时候。而实际上,假设我们要探究的不是数据在统计上的数值关系,而是因果关系或比较,我们可以把数据处理成秩次的形式,从而去对比数据组,这样相当
- 半导体晶圆制造良率提升的指标体系设计
莫叫石榴姐
数字化建设通关指南人工智能大数据sql制造
针对半导体晶圆制造良率提升的指标体系设计,需紧密结合行业特有的工艺复杂性、缺陷模式、设备参数和材料特性,避免通用指标堆砌。以下是一套差异化指标体系框架,覆盖从晶圆加工到最终测试的全流程,融入行业关键要素:一、指标体系设计原则工艺导向:聚焦半导体制造核心步骤(光刻、蚀刻、薄膜沉积、CMP等)的物理特性。缺陷驱动:量化缺陷类型(颗粒污染、刻蚀残留、对准偏移等)与良率的因果关系。动态监控:引入实时过程控
- 简述相关与回归分析的关系_相关分析与回归分析的联系与区别
白尼桑塔纳
简述相关与回归分析的关系
相关分析与回归分析都是统计上研究变量之间关系的常用办法。他们都可以断定两组变量具有统计相关性。相关分析中两组变量的地位是平等的,而回归分析两个变量位置一般不能互换。相关分析与回归分析的关系这两种分析是统计上研究变量之间关系的常用办法。相同点:他们都可以断定两组变量具有统计相关性。不同点:相关分析中两组变量的地位是平等的,不能说一个是因,另外一个是果。或者他们只是跟另外第三个变量存在因果关系。而回归
- JVM系列(4)——内存模型
JinchaoLv
JVMjavajvm内存模型happens-before
文章目录4内存模型4.1经典用例4.2内存模型的官方描述4.3programorder4.3.1一些概念4.3.2几个例子4.4synchronizationorder4.5happens-beforeorder4.6Java内存模型4.6.1过于严格的模型4.6.2过于宽松的模型4.6.3Java内存模型4.7因果关系4.7.1例一4.7.2例二4.7.3例三4.7.4例四4.7.5例五4内存模
- 定性分析与定量分析
小小小小小小小小熊
项目管理项目管理
定性分析是指研究者运用历史回顾、文献分析、访问、观察、参与经验等方法获得教育研究的资料,并用非量化的手段对其进行分析、获得研究结论的方法。定性研究主要是一种价值判断,它建立在解释学、现象学和建构主义理论等人文主义的方法论基础上。其主要观点是:社会现象不像自然现象那样受因果关系的支配,社会现象与自然现象有着本质的不同。定量分析定量分析的结果通常是由大量的数据来表示的,研究设计是为了是使研究者通过对这
- 因果推断的可解释性与可信度:评估因果关系的有效性
AI天才研究院
AIAgent应用开发计算AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
因果推断的可解释性与可信度:评估因果关系的有效性关键词:因果推断、可解释性、可信度、因果关系评估、反事实分析、因果图、工具变量法、随机化实验文章目录因果推断的可解释性与可信度:评估因果关系的有效性1.背景介绍2.核心概念与联系3.核心算法原理&具体操作步骤3.1算法原理概述3.2算法步骤详解3.3算法优缺点3.4算法应用领域4.数学模型和公式&详细讲解&举例说明4.1数学模型构建4.2公式推导过程
- 软考高级-架构设计师 【第二章 软件工程 2.1开发模型 2.2需求工程】基于B站的学习笔记
自传.
架构软件工程学习软考高级B站学习笔记
第二章软件工程2.1开发模型2.1.1瀑布模型结构化方法,严格区分阶段,每个阶段因果关系紧密相连,责任划分清楚只适合需求明确的项目2.1.2原型模型迭代方法,适合需求不明确的项目原型模型两个阶段:原型开发阶段和目标软件开发阶段2.1.3V模型测试贯穿于始终,测试分阶段,测试计划提前需求分析->验收测试与系统测试;概要设计对应集成测试;详细设计对应单元测试;2.1.4迭代和增量2.1.5螺旋模型以快
- 攻击溯源技术体系:从理论架构到工程化实践的深度剖析
玉笥寻珍
安全系列安全威胁分析网络web安全网络协议
一、攻击溯源的理论基石与模型构建1.1形式化理论框架攻击溯源本质上是基于离散数学与图论的演绎推理过程。通过构建攻击事件有向图(AEDG,AttackEventDirectedGraph),将网络空间中的每个事件抽象为节点,事件间的因果关系表示为有向边。其数学定义如下:G=(V,E)其中V=\{v_1,v_2,...,v_n\}为事件节点集合,E=\{(v_i,v_j)\}表示节点间的依赖关系,满足
- 大模型因果逻辑的欠缺
大囚长
大模型人工智能
大模型目前尚未具备真正的因果推导能力,其表现更多依赖于数据中的统计关联和模式匹配,而非深层次的因果逻辑推理。1.因果推理能力普遍欠缺根据上海AI实验室的评测,当前主流大模型在复杂因果推理任务(如反事实推断、干预预测)中表现显著不足,随着任务复杂性的增加,模型准确率几乎降至零。例如,在需要理解因果方向或处理未观测变量的场景中,模型难以有效推理。研究显示,大模型在处理因果关系时更倾向于“概率性推断”,
- 当系统闹脾气:用「因果推断」哄稳技术的心
程序员
作者:京东物流冯志文背景系统稳定性问题往往涉及复杂的因果关系。例如,一个系统的崩溃可能由多个因素引起,包括硬件故障、软件bug、业务配置、外部攻击或其他操作不当等。理解这些因素之间的因果关系对于系统稳定性建设至关重要。举个例子:服务雪崩A服务调用B服务之间发生了雪崩效应,原本B本身有点小问题,而A由于内置的各种容错和重试机制,反而加剧了B的服务负载,导致其出现更多的失败。这些失败触发了A的无限重
- 孟德尔随机化:脑卒中研究新钥匙
Ljugg
人工智能大数据数据库
孟德尔随机化:脑卒中研究新钥匙孟德尔随机化,作为一种基于遗传变异的因果推断方法,正逐渐成为医学研究领域的有力工具,在脑卒中研究中发挥着关键作用。它的基本原理源于孟德尔遗传定律,即个体在受精过程中,等位基因会从父母那里随机分配给后代,这种随机分配类似于随机对照试验中的随机分组。通过巧妙利用这一特性,孟德尔随机化将遗传变异作为“自然发生”的工具变量,以此来探索暴露因素与疾病之间的因果关系。在传统的观察
- 生信分析服务MR孟德尔随机化单细胞测序转录组数据分析网络药理学
matlabgoodboy
mr数据分析数据挖掘
将孟德尔随机化(MR)、单细胞测序、转录组数据分析和网络药理学结合,是当前生物信息学领域的前沿方法,尤其在疾病机制解析、靶点发现和药物研发中展现出巨大潜力。以下从技术逻辑、应用场景和服务流程三个维度展开说明:一、技术逻辑与优势孟德尔随机化(MR)核心作用:通过遗传变异作为工具变量,推断暴露因素(如肠道菌群、代谢物)与疾病之间的因果关系,减少混杂因素干扰。数据需求:全基因组关联研究(GWAS)数据、
- 人生感悟-成熟
dawanzi521
程序人生人生感悟成熟
不久前看到网上的一个帖子,随即保存下来,不知出处一:沉稳(1)不要随便显露你的情绪。(2)不要逢人就诉说你的困难和遭遇。(3)在征询别人的意见之前,自己先思考,但不要先讲。(4)不要一有机会就唠叨你的不满。(5)重要的决定尽量有别人商量,最好隔一天再发布。(6)讲话不要有任何的慌张,走路也是。二:细心(1)对身边发生的事情,常思考它们的因果关系。(2)对做不到位的执行问题,要发掘它们的根本症结。(
- 文本标注工具(brat)
deepdata_cn
文本标注文本标注
文本标注是自然语言处理领域中的一项基础且关键的任务,它主要是指专业的标注人员或借助特定的标注工具,按照一定的规则和标准,对文本内容进行标记和注释,从而赋予文本特定的语义信息和结构信息。具体来说,标注人员会根据任务需求,在文本中识别并标记出各种元素,比如将文本中的人名、地名、组织机构名等标注为不同的实体类型,确定文本中不同实体之间存在的关系,像因果关系、所属关系等,还会对文本中的特定事件进行标注,记
- 在数据分析工作中运用因果推断模型的实践指南
theskylife
#因果分析数据分析大数据人工智能AI因果分析
目录1.写在开头2.因果推断模型的基础2.1因果关系vs.相关关系2.2基本概念和术语3.常见的因果推断方法3.1随机对照试验(RCTs)3.2工具变量法(IV)3.3回归不连续设计(RDD)4.因果推断的实际应用4.1案例研究1:使用RCTs分析营销活动的效果4.1.1背景和问题描述4.1.2实验设计和数据收集4.1.3数据分析和结果解释4.2案例研究2:应用工具变量法解决价格对销量的影响问题4
- 【深入探索-deepseek】高等数学与AI的因果关系
我的青春不太冷
人工智能机器学习数学
目录数学在AI不同领域的应用区别一、计算机视觉领域1.线性代数2.微积分3.概率论与统计二、自然语言处理领域三、语音识别领域四、数学在AI不同领域应用的逻辑图五、参考资料数学在AI不同领域的应用区别一、计算机视觉领域1.线性代数图像变换:想象我们有一张二维图片,图片里有个点,它的位置用坐标((x,y))表示。现在我们想把这个点绕着图片的原点(就像把纸钉在墙上,以钉子的位置为中心)逆时针旋转一定角度
- 主题聚类:精炼信息的关键步骤
XianxinMao
聚类数据挖掘机器学习
标题:主题聚类:精炼信息的关键步骤文章信息摘要:主题聚类是一种关键的信息整合方法,通过识别相似主题、合并重复内容并保留最完整、准确的版本来优化信息结构。这一过程不仅减少了信息冗余,还提高了信息的质量和可用性,广泛应用于学术研究、内容创作和数据分析等领域。逻辑层级的建立则帮助区分主要和次要观点,识别因果关系,构建清晰的逻辑框架,使观点更具说服力。信息完整性要求每个观点都得到完整表达,补充必要的上下文
- 因果关系推断与机器学习
hhhh106
读书笔记大数据
因果关系定义设X和Y是两个随机变量。定义X是Y的因,即因果关系X→Y存在,当且仅当Y的取值一定会随X的取值变化而发生变化。两个变量X、Y之间有相关性往往不是我们能判断它们之间有因果关系的依据。其中包括三种情况:X是Y的因、X是Y的果、X与Y有共同原因(commoncause)。对于第三种情况,我们把这种不是因果关系的相关性叫作虚假相关(spuriouscorrelation)。机器学习模型是强大的
- 因果推断与机器学习—因果推断入门(1)
樱花的浪漫
因果推断机器学习人工智能计算机视觉搜索引擎深度学习算法
在机器学习被广泛应用于对人类产生巨大影响的场景(如社交网络、电商、搜索引擎等)的今天,因果推断的重要性开始在机器学习社区的论文和演讲中被不断提及。图灵奖得主YoshuaBengio在对系统2(system2,这个说法来自心理学家DanielKahneman的作品,人类大脑由两套系统构成:系统1负责快速思考,做出下意识的反应;系统2则负责比较耗时的思考,如理解事物之间的因果关系)的畅想中强调,在实现
- 5. 言语理解与表达 5-中心理解题-关联词因果
上岸学堂
行测小白到上岸-言语理解与表达行测百日上岸计划人工智能经验分享学习职场和发展大数据java
关联词-因果核心特征结论是重点:在因果关系中,结论通常是文段的中心内容。典型格式:因为……所以……由于……因此……结论句位置结论句的位置对解题有重要影响,主要有以下几种情况:结论句在结尾这是最常见的情况,也是最容易识别的。例:“近年来,我国持续加大环境保护力度,实施了一系列严格的污染防治措施。因此,空气质量明显改善,PM2.5浓度大幅下降。”在这个例子中,结论"空气质量明显改善,PM2.5浓度大幅
- 水泥质量纠纷案代理词
徐宝峰律师
贵州领航建设有限公司诉贵州纳雍隆庆乌江水泥有限公司产品质量纠纷案代理词尊敬的审判长、审判员:贵州千里律师事务所接受被告贵州纳雍隆庆乌江水泥有限公司的委托,指派我担任其诉讼代理人,参加本案的诉讼活动。下面,我结合本案事实和相关法律规定发表如下代理意见,供合议庭评议案件时参考:原告应当举证证明其遭受的损失与被告生产的水泥质量的因果关系。首先水泥是一种粉状水硬性无机胶凝材料。加水搅拌后成浆体,能在空气中
- 阅读笔记:阅读方法中的逻辑和转念
施吉涛
聊聊一些阅读的方法论吧,别人家的读书方法刚开始想写,然后就不知道写什么了,因为作者写的非常的“精致”我有一种乡巴佬进城的感觉,看到精美的摆盘,精致的食材不知道该如何下口也就是《阅读的方法》,我们姑且来试一下强劲的大脑篇,第一节:逻辑通俗的来讲,也就是表达的排列和顺序,再进一步就是因果关系和关联实际上书已经看了大概一遍,但直到打算写一下笔记的时候,才发现作者讲的推理更多的是阅读的对象中呈现出的逻辑也
- 判断推理之加强
筱笭
四、削弱之因果倒置和他因削弱题型特征:论点具有因果关系选项特征:1.因果倒置:将论点中的因果关系顺序颠倒2.他因削弱:在原来原因1的基础上,选项增加另一个同时存在的原因2也能导致相同的结果,削弱的是原来原因的重要性或者唯一性五.加强之补充论据1.解释:说明论点成立的原因2.举例:证明论点成立的例子六、加强之搭桥(力度最强)题型特征:1.论点和论据讨论的话题不一致2.提问方式为问前提、假设、必要条件
- Sora文本生成影像模型背后的创新原理与挑战
noVonN
c语言深度学习算法区块链人工智能
引言随着人工智能技术的飞速发展,OpenAI作为行业领导者,在文本生成领域取得重大突破之后,近日又推出了其在影像生成领域的最新力作——Sora。这款模型将自然语言处理与计算机视觉技术相结合,旨在通过输入文本描述来快速创作出逼真的电影场景,为内容创作者提供了前所未有的艺术表达工具。然而,正如OpenAI所指出的那样,尽管Sora展现出了令人惊叹的创造力,但它在仿真复杂物理现象和理解具体事例因果关系方
- 双重差分模型DID
PD我是你的真爱粉
计量经济学金融
双重差分模型(DID)–潘登同学的计量经济学笔记文章目录双重差分模型(DID)--潘登同学的计量经济学笔记基本思想构造模型数据前提稳健性检验共同趋势(CT)检验安慰剂检验stata示例DID估计平行趋势检验安慰剂检验基本思想双重差分法可以理解为对随机分配实验的一种模拟,在没有随机实验的情况下去验证因果关系。步骤:分组:对于一个自然实验,其将全部的样本数据分为两组:一组是受到干预影响,即实验组;另一
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文