- 实战LLM强化学习——使用GRPO(DeepSeek R1出圈算法)
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3经验分享
引言近年来,深度强化学习(DRL)已经成为解决复杂决策问题的一个强有力工具,尤其是在自然语言处理(NLP)领域的广泛应用。通过不断优化决策策略,DRL能在大量数据中学习最佳行为,尤其是大型语言模型(LLM)在任务中展现出的巨大潜力。然而,随着模型规模的扩大和任务复杂性的增加,传统的强化学习算法开始暴露出训练效率低、收敛速度慢等问题。为了解决这些挑战,DeepSeek公司提出了一个新的强化学习算法—
- 混合整数非线性规划的松弛与分解方法
Waiyuet Fung
混合整数非线性规划松弛方法分解技术启发式算法全局优化
背景简介混合整数非线性规划(MINLPs)作为运筹学中的一个重要领域,涉及到优化问题的连续和离散变量混合,在工程设计、生产调度、资源分配等多个领域发挥着关键作用。本书由I.Nowak撰写,旨在深入探讨这一复杂的优化问题及其解决方案。MINLPs基础概念在本书的第一部分,Nowak介绍了MINLPs的基本概念。MINLPs的目标是寻找一组连续和整数变量的最优组合,以最小化或最大化某个非线性目标函数。
- 文本纠错(Text Correction)
dundunmm
人工智能数据挖掘文本纠错人工智能数据挖掘文本纠错深度学习
文本纠错(TextCorrection)是自然语言处理(NLP)中的一个重要任务,旨在自动检测并修正文本中的错误,包括拼写、语法、语义等层面的错误。其核心目标是通过算法模型将错误文本转换为符合语言规范的表达。该任务在自动写作辅助、搜索引擎优化、智能客服、教育等多个领域具有广泛应用。输入:包含错误的原始文本(如“我明天要去北京,希望天汽好。”)输出:修正后的规范文本(如“我明天要去北京,希望天气好。
- 使用CharacterTextSplitter实现文本按字符拆分
bavDHAUO
python
在文本处理任务中,按字符进行拆分是一种简单且有效的方法。本篇文章将介绍如何使用CharacterTextSplitter类对文本进行按字符拆分,并生成适用于下游任务的LangChainDocument对象。技术背景介绍文本拆分是自然语言处理(NLP)中的一个基础步骤,尤其在大文本分块处理、文本摘要等任务中。CharacterTextSplitter是langchain-text-splitters
- 【产品小白】什么是AI产品经理
百事不可口y
产品经理的一步一步人工智能产品经理学习产品运营内容运营用户运营
一、AI产品经理的定义与角色定位AI产品经理是人工智能技术与商业应用之间的核心桥梁,负责将复杂的AI技术转化为满足市场需求的产品。需同时具备技术理解力、商业洞察力和用户思维,既要参与算法选型与数据建模,又要定义产品功能与市场策略,是贯穿产品全生命周期的关键角色。与传统互联网产品经理相比,AI产品经理的独特之处在于:技术深度参与:需理解机器学习、自然语言处理(NLP)、计算机视觉等技术原理,并参与数
- 人工智能(AI)系统化学习路线
xiaoyu❅
python人工智能学习
一、为什么需要系统化学习AI?人工智能技术正在重塑各行各业,但许多初学者容易陷入误区:❌盲目跟风:直接学习TensorFlow/PyTorch,忽视数学与算法基础。❌纸上谈兵:只看理论不写代码,无法解决实际问题。❌方向模糊:对CV/NLP/RL等细分领域缺乏认知,难以针对性提升。正确的学习姿势:“金字塔式”分层学习(理论→算法→框架→应用→工程化),逐步构建完整的AI知识体系。二、人工智能学习路线
- NLP高频面试题(三)——普通RNN的梯度消失和梯度爆炸问题
Chaos_Wang_
NLP常见面试题自然语言处理rnn人工智能
普通RNN(循环神经网络)的梯度消失和梯度爆炸问题是指在训练深层或长序列的RNN模型时出现的两种典型问题:一、梯度消失(VanishingGradient)梯度消失是指在反向传播过程中,梯度逐层传播时变得越来越小,最终趋于接近0,导致模型前层的参数难以更新。原因:在反向传播时,每一层的梯度是通过链式法则计算得到的。因为链式求导中不断乘以一个较小的数值(小于1),随着层数或时间步的增加,梯度将指数级
- 使用LangChain实现大规模语言模型自发现推理结构
VYSAHF
langchain语言模型人工智能python
使用LangChain实现大规模语言模型自发现推理结构在现代自然语言处理(NLP)的研究中,大规模语言模型(LLMs)已经展示了强大的能力。然而,在应对复杂的推理问题时,传统的提示方法常常力不从心。这篇文章将带您了解SELF-DISCOVER,一种新兴的框架,如何通过LangChain来实现自动化、动态化的推理结构构建,以提高LLMs的性能。技术背景介绍大规模语言模型(如GPT-4和PaLM2)已
- 【论文精读】PatchTST-基于分块及通道独立机制的Transformer模型
打酱油的葫芦娃
时序预测算法时序预测PatchTSTTransformer预训练微调表征学习
《ATIMESERIESISWORTH64WORDS:LONG-TERMFORECASTINGWITHTRANSFORMERS》的作者团队来自PrincetonUniversity和IBMResearch,发表在ICLR2023会议上。动机Transformer模型因其自注意力机制在处理序列数据方面的优势,在自然语言处理(NLP)、计算机视觉(CV)、语音等多个领域取得了巨大成功。这种机制使得模型
- Dify知识库构建流程及示例
cqbelt
ai笔记AI应用
总体流程1.数据预处理清洗:去除噪声、特殊字符、标准化格式。分词/标记化:拆分文本为单词或子词单元(如使用Tokenizer)。元数据关联:附加来源、时间戳等信息,支持多维度检索。2.文本分块固定长度分块:按字符或Token数切分,简单高效。语义分块:基于句子边界或主题分割(如NLP模型识别段落主旨)。重叠策略:相邻块间部分重叠,避免上下文断裂。3.向量化(Embedding)嵌入模型:调用预训练
- NLP高频面试题(四)——BN和LN的区别与联系,为什么attention要用LN
Chaos_Wang_
NLP常见面试题自然语言处理人工智能
在深度学习模型中,Normalization是一种极为重要的技巧,BatchNormalization(BN)和LayerNormalization(LN)是其中最为常用的两种方法。然而,二者在实际应用中有着明显的区别与联系,尤其在Transformer的Attention机制中,LN有着独特的优势。一、BN与LN的核心区别与联系1.BatchNormalization(BN)BN的思想源于一个叫
- RAG 在多模态数据处理中的应用探索:结合图像与文本生成
hy098543
AIGC
目录引言多模态数据处理的挑战与需求数据异质性与融合难题多样化应用场景的需求RAG在图像与文本生成中的应用架构图像检索与文本生成协同跨模态特征融合与生成关键技术与实现细节图像特征提取与表示文本检索与语义理解跨模态生成模型训练应用案例分析智能设计辅助医疗影像报告生成结论引言随着信息技术的飞速发展,数据呈现出多模态的特性,即包含文本、图像、音频、视频等多种形式。在自然语言处理(NLP)和计算机视觉(CV
- AI在项目中的应用
酒江
人工智能
AI大模型(如GPT-4、BERT、T5等)在各类项目中有广泛的应用,可以极大地提高项目效率、优化流程,并解决许多传统方法难以应对的问题。以下是AI大模型在不同类型项目中的一些具体应用:1.自然语言处理(NLP)文本生成和摘要:AI大模型可以生成高质量的文本内容,自动撰写文章、新闻报道、博客或技术文档,甚至可以进行文献摘要,帮助内容创作者提高效率。情感分析:在客户服务、社交媒体监控或市场研究项目中
- AI API:快速集成智能化功能的开发利器
桂花饼
AIGCAIAPI人工智能AIGC语言模型AI作画
AIAPI(ArtificialIntelligenceApplicationProgrammingInterface,人工智能应用程序接口)是应用程序接口的一种,专门用于提供人工智能相关功能的开发接口。它允许开发者利用现有的AI模型、工具或服务,将这些功能集成到自己的应用程序中,并为用户带来智能化的体验。AIAPI的核心功能主要与AI技术相关,比如自然语言处理(NLP)、计算机视觉、语音处理、机
- 大模型与自然语言理解(NLU):差异与联系
技术流 Gavin
AIoTpython语言模型ai
近年来,人工智能领域取得了显著进展,尤其是在自然语言处理(NLP)方面。大模型和自然语言理解(NLU)作为NLP的两个重要分支,常常被提及,但它们之间存在着本质区别。1.定义与目标大模型:通常指拥有庞大参数规模(数十亿甚至数千亿)的深度学习模型,例如GPT-3、LaMDA等。它们通过海量文本数据进行训练,旨在学习语言的统计规律,并能够生成流畅、连贯的文本。NLU:是NLP的一个子领域,专注于让机器
- 基于树莓派的轻量级AI数字人开发全流程指南 ——从硬件选型到语音视觉交互实战
zhz5214
AIai人工智能AI写作AI编程智能体
1.背景与目标AI数字人,像是虚拟助手、交互式角色,在当下数字化浪潮中扮演着越来越重要的角色。其核心在于整合语音识别、视觉感知、自然语言处理(NLP)和动态反馈四大关键功能。本文将以树莓派5开发板为核心,搭配AI加速硬件,结合开源框架,为大家详细阐述如何实现本地化轻量级数字人开发。这一方案特别适用于教育领域,帮助学生更直观地理解AI技术;在智能家居场景中,也能为用户带来更智能、便捷的交互体验。2.
- RAG数据嵌入和重排序:如何选择合适的模型
从零开始学习人工智能
深度学习
RAG数据嵌入和重排序:如何选择合适的模型在自然语言处理(NLP)领域,Retrieval-AugmentedGeneration(RAG)模型已经成为一种强大的工具,用于结合检索和生成能力来处理复杂的语言任务。RAG模型的核心在于两个关键步骤:数据嵌入(Embedding)和重排序(Re-ranking)。这两个步骤的选择和优化对于模型的性能至关重要。本文将探讨如何选择合适的模型来实现高效的数据
- 自然语言处理领域CCF推荐的A类期刊
冰蓝蓝
自然语言处理人工智能
在自然语言处理(NLP)这一蓬勃发展的领域,研究人员和学者们致力于探索语言的深层含义和应用。中国计算机学会(CCF)推荐的A类期刊和会议是该领域内公认的高质量研究发表平台。这是我在学习时整理的一些顶刊并附上官网地址直达。1.ACL(AnnualMeetingoftheAssociationforComputationalLinguistics)ACL是自然语言处理领域的顶级会议之一,由Associ
- 机器学习中输入输出Tokens的概念详解
爱吃土豆的程序员
机器学习基础机器学习人工智能Tokens
随着深度学习技术的快速发展,大语言模型(LargeLanguageModels,LLMs)已经成为自然语言处理(NLP)领域的一个热点研究方向。这些模型不仅能够生成高质量的文本,还能在多种任务中展现出卓越的表现,比如机器翻译、问答系统、文本摘要等。在大语言模型的工作流程中,Tokens的概念扮演着至关重要的角色。本文将详细介绍大语言模型如何使用Tokens,以及如何计算Tokens的数量。什么是T
- 输入:0.5元/百万tokens(缓存命中)或2元(未命中) 输出:8元/百万tokens
杏花春雨江南
缓存
这句话描述了一种定价模型,通常用于云计算、API服务或数据处理服务中,根据资源使用情况(如缓存命中与否)来收费。以下是对这句话的详细解释:1.关键术语解释Tokens:在自然语言处理(NLP)或数据处理领域,Token通常指文本的最小单位(如一个单词或一个字符)。在这里,Tokens是计费的单位。缓存命中(CacheHit):当请求的数据已经在缓存中时,称为缓存命中。缓存命中通常意味着更快的响应速
- Ollama 基本概念
Mr_One_Zhang
学习Ollamaai
Ollama是一个本地化的、支持多种自然语言处理(NLP)任务的机器学习框架,专注于模型加载、推理和生成任务。通过Ollama,用户能够方便地与本地部署的大型预训练模型进行交互。1.模型(Model)在Ollama中,模型是核心组成部分。它们是经过预训练的机器学习模型,能够执行不同的任务,例如文本生成、文本摘要、情感分析、对话生成等。Ollama支持多种流行的预训练模型,常见的模型有:deepse
- CSDN社区,到底该不该用DeepSeek AI生成文章?
Small踢倒coffee_氕氘氚
python经验分享
##引言在当今数字化时代,人工智能(AI)技术正以惊人的速度发展,逐渐渗透到各个行业和领域。作为AI技术的一个重要分支,自然语言处理(NLP)在内容创作、文本生成等方面展现出了巨大的潜力。DeepSeekAI作为一款先进的AI写作工具,能够自动生成高质量的文章,极大地提高了内容创作的效率。然而,随着AI生成内容的普及,CSDN社区中的开发者、技术爱好者和内容创作者们开始思考一个问题:我们到底该不该
- AI大模型学习路线:从入门到精通的完整指南【2025最新】
AI大模型-大飞
人工智能学习大模型LLMAI程序员大模型学习
引言近年来,以GPT、BERT、LLaMA等为代表的AI大模型彻底改变了人工智能领域的技术格局。它们不仅在自然语言处理(NLP)任务中表现卓越,还在计算机视觉、多模态交互等领域展现出巨大潜力。本文旨在为开发者、研究者和技术爱好者提供一条清晰的学习路径,帮助读者逐步掌握大模型的核心技术并实现实际应用。一、基础阶段:构建知识体系数学与理论基础线性代数:矩阵运算、特征值与奇异值分解是大模型参数优化的基础
- 深入解析两大AI模型的架构与功能
草莓屁屁我不吃
人工智能chatgpt
在人工智能(AI)领域,自然语言处理(NLP)一直是研究的热点之一。随着技术的不断进步,我们见证了从简单的聊天机器人到复杂语言模型的演变。其中,Google的Gemini和OpenAI的ChatGPT作为两大代表性模型,各自在技术和应用上展现出了卓越的性能。本文将详细解析Gemini和ChatGPT的系统架构、功能特性及其背后的技术原理。Gemini模型详解技术背景与架构Gemini,顾名思义,意
- linux系统安全
IT小饕餮
linux基础linux系统安全运维
管理终端登录[root@localhost~]#grep"/sbin/nologin$"/etc/passwd表示禁止终端登录,应确保不被人改动输出结果:bin:x:1:1:bin:/bin:/sbin/nologindaemon:x:2:2:daemon:/sbin:/sbin/nologinadm:x:3:4:adm:/var/adm:/sbin/nologinlp:x:4:7:lp:/var
- 【NLP】 3. Distributional Similarity in NLP(分布式相似性)
pen-ai
NLP机器学习自然语言处理分布式人工智能
DistributionalSimilarityinNLP(分布式相似性)分布式相似性(DistributionalSimilarity)是自然语言处理(NLP)中的核心概念,基于“相似的单词出现在相似的上下文中”这一假设。它用于衡量单词之间的相似性,广泛应用于词向量、信息检索、文本分类等任务。1.分布式假设(DistributionalHypothesis)分布式相似性基于以下假设:“Yoush
- 【NLP】 9. 处理创造性词汇 & 词组特征(Creative Words & Features Model), 词袋模型处理未知词,模型得分
pen-ai
NLP机器学习自然语言处理人工智能深度学习
这里写目录标题处理创造性词汇&词组特征(CreativeWords&FeaturesModel)1.处理否定(NegationHandling)2.词组特征(Bigrams&N-grams)3.结合否定传播与n-grams进行优化词袋模型(Bag-of-Words,BoW)1.BoW示例2.处理未知词3.为什么忽略未知词?4.处理未知词的方法计算模型得分(ScoreCalculation)处理创造
- 【NLP】 5. Word Analogy Task(词类比任务)与 Intrinsic Metric(内在度量)
pen-ai
NLP机器学习自然语言处理word人工智能
WordAnalogyTask(词类比任务)定义:WordAnalogyTask是用于评估词向量质量的内在指标(IntrinsicMetric)。该任务基于这样的假设:如果词向量能够捕捉单词之间的语义关系,那么这些关系应该能够在向量空间中保持一定的结构。示例:在一个理想的词向量空间中,单词之间的关系应该满足如下等式:king−man+woman≈queenking−man+woman≈queenk
- 大规模语言模型从理论到实践 开源指令数据集
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大规模语言模型从理论到实践开源指令数据集1.背景介绍大规模语言模型(LargeLanguageModels,LLMs)近年来在自然语言处理(NLP)领域取得了显著的进展。诸如GPT-3、BERT等模型在各种任务中表现出色,从文本生成到翻译,再到问答系统,几乎无所不能。这些模型的成功离不开庞大的训练数据集和复杂的算法架构。然而,如何有效地构建和利用开源指令数据集,仍然是一个值得深入探讨的话题。2.核
- 使用Python和LangChain创建可调用工具的智能对话机器人:全面指南
m0_57781768
pythonlangchain机器人
使用Python和LangChain创建可调用工具的智能对话机器人:全面指南在当今技术迅猛发展的时代,人工智能(AI)和自然语言处理(NLP)技术的应用范围越来越广。尤其是对话机器人,它们不仅能与人类进行自然交互,还能通过调用外部API与各种系统对接,为用户提供更加智能和灵活的服务。本文将通过一系列实例和代码演示,向您展示如何利用Python编程语言和LangChain框架,创建能够使用外部工具(
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">