首先,一个神奇的结论:
一个合法的方案存在的条件是每一个联通块的节点数都是偶数个的.
这个可以用数学归纳法简单证一证.
证出这个后,我们只需动态加入每一个边,并查看一下有哪些边能够被删除(删掉后联通块依然合法).
对于维护加边,删边,我们用动态树.
对于枚举哪些边可以被删,我们可以用堆/set来维护.
由于每一条边最多只会加一次,也最多只会删一次,所以总时间复杂度为 $O(nlogm)$.
#include
#include
#include
#include
#define lson t[x].ch[0]
#define rson t[x].ch[1]
#define N 500000
#define setIO(s) freopen(s".in","r",stdin) ,freopen(s".out","w",stdout)
using namespace std;
struct Edge {
int u,v,c,id;
Edge(int u=0,int v=0,int c=0,int id=0):u(u),v(v),c(c),id(id){}
bool operator<(Edge a) const{
return a.c>c;
}
}e[N];
priority_queueq;
int sta[N],n,m,del[N];
struct Node {
int ch[2],max,val,son,size,f,id,rev;
}t[N];
int isrt(int x) {
return !(t[t[x].f].ch[0]==x||t[t[x].f].ch[1]==x);
}
int get(int x) {
return t[t[x].f].ch[1]==x;
}
void mark(int x) {
if(!x) return;
swap(lson,rson), t[x].rev^=1;
}
void pushup(int x) {
t[x].max=t[x].val,t[x].id=x;
t[x].max=max(t[x].max,max(t[lson].max,t[rson].max));
if(t[lson].max==t[x].max) t[x].id=t[lson].id;
if(t[rson].max==t[x].max) t[x].id=t[rson].id;
t[x].size=t[x].son+t[lson].size+t[rson].size+(x<=n);
}
void pushdown(int x) {
if(t[x].rev) mark(lson), mark(rson), t[x].rev=0;
}
void rotate(int x) {
int old=t[x].f,fold=t[old].f,which=get(x);
if(!isrt(old))
t[fold].ch[t[fold].ch[1]==old]=x;
t[old].ch[which]=t[x].ch[which^1],t[t[old].ch[which]].f=old;
t[x].ch[which^1]=old,t[old].f=x,t[x].f=fold;
pushup(old),pushup(x);
}
void splay(int x) {
int v=0,u=x,fa;
for(sta[++v]=u;!isrt(u);u=t[u].f) sta[++v]=t[u].f;
for(int i=v;i>=1;--i) pushdown(sta[i]);
for(u=t[u].f;(fa=t[x].f)!=u;rotate(x))
if(t[fa].f!=u)
rotate(get(fa)==get(x)?fa:x);
}
void Access(int x) {
int y=0;
while(x) {
splay(x);
t[x].son-=t[y].size;
t[x].son+=t[rson].size;
rson=y,pushup(x),y=x,x=t[x].f;
}
}
void makeroot(int x) {
Access(x),splay(x),mark(x);
}
int findroot(int x) {
int u;
Access(x),splay(x);
while(x) {
pushdown(x);
u=x,x=lson;
}
return u;
}
void split(int x,int y) {
makeroot(x),Access(y),splay(y);
}
void link(int x,int y) {
makeroot(x), makeroot(y),t[x].f=y, t[y].son+=t[x].size,pushup(y);
}
void cut(int x,int y) {
makeroot(x),Access(y),splay(y);
t[y].ch[0]=t[x].f=0;
pushup(y);
}
int main() {
int i,j;
// setIO("input");
scanf("%d%d",&n,&m);
if(n%2==1) {
for(i=1;i<=m;++i) printf("-1\n");
return 0;
}
int cnt=n;
for(i=1;i<=m;++i) {
int u,v,c;
scanf("%d%d%d",&u,&v,&c);
e[i]=Edge(u,v,c,i+n);
int x=findroot(u),y=findroot(v);
if(x!=y) {
int now=i+n;
makeroot(u),makeroot(v);
if(t[u].size%2==1&&t[v].size%2==1) cnt-=2;
t[now].val=c;
link(u,now),link(now,v);
q.push(Edge(u,v,c,now));
}
else {
split(u,v);
if(t[v].max>c) {
int cc=t[v].id,xx=e[cc-n].u,yy=e[cc-n].v,now=i+n;
cut(cc,xx),cut(cc,yy), t[now].val=c;
del[cc]=1;
link(u,now),link(now,v);
q.push(Edge(u,v,c,now));
}
}
if(cnt) printf("-1\n");
else {
while(1) {
while(!q.empty()&&del[q.top().id]) q.pop();
int xx=q.top().u,yy=q.top().v,cc=q.top().id,X,Y;
makeroot(cc);
Access(xx),splay(xx),X=t[xx].size-t[cc].size;
Access(yy),splay(yy),Y=t[yy].size-t[cc].size;
if(X%2==0&&Y%2==0)
cut(xx,cc),cut(yy,cc),q.pop();
else break;
}
printf("%d\n",q.top().c);
}
}
return 0;
}