zookeeper学习笔记

1.为什么需要zookeeper

https://zhuanlan.zhihu.com/p/69114539?utm_source=wechat_session
zookeeper学习笔记_第1张图片
简而言之,zookeeper就是一个管理协调者,处理不同的客户端请求,合理分配资源。但是由于单机不安全,所以做成了分布式模型。所以称zookeeper为一个分布式协调系统。
而分布式系统要解决的核心问题就是数据同步问题,在具体总结zookeeper采用的策略之前,先看一下zookeeper的架构及原理。

2.zookeeper架构及原理

架构

zookeeper学习笔记_第2张图片

zookeeper学习笔记_第3张图片
zk集群由多个节点组成,其中有且仅有一个leader,处理所有事务请求;follower及observer统称learner。learner需要同步leader的数据。follower还参与选举及事务决策过程。zk客户端会打散配置文件中的serverAddress 顺序并随机组成新的list,然后循环按序取一个服务器地址进行连接,直到成功。follower及observer会将事务请求转交给leader处理。

流程

zookeeper学习笔记_第4张图片

原理

zookeeper内部是通过维护一个文件系统来实现功能的,简单来说zookeeper=文件系统+监听通知机制
监听通知机制即为zookeeper将文件系统的改变通知给相关客户端。
zookeeper学习笔记_第5张图片
数据节点(dataNode)zk数据模型中的最小数据单元,数据模型是一棵树,由斜杠(/)分割的路径名唯一标识,数据节点可以存储数据内容及一系列属性信息,同时还可以挂载子节点,构成一个层次化的命名空间。每个子目录项如services 都被称作为 znode(目录节点),和文件系统一样,我们能够自由的增加、删除znode,在一个znode下增加、删除子znode,唯一的不同在于znode是可以存储数据的。
znode的类型:

  • PERSISTENT-持久化目录节点
    客户端与zookeeper断开连接后,该节点依旧存在
  • PERSISTENT_SEQUENTIAL-持久化顺序编号目录节点
    客户端与zookeeper断开连接后,该节点依旧存在,只是Zookeeper给该节点名称进行顺序编号
  • EPHEMERAL-临时目录节点
    客户端与zookeeper断开连接后,该节点被删除
  • EPHEMERAL_SEQUENTIAL-临时顺序编号目录节点
    客户端与zookeeper断开连接后,该节点被删除,只是Zookeeper给该节点名称进行顺序编号

举例说明:
(1)实现集群管理(是否有机器加入、退出,选举master):
对于第一点,所有机器约定在父目录GroupMembers下创建临时目录节点,然后监听父目录节点的子节点变化消息。一旦有机器挂掉,该机器与 zookeeper的连接断开,其所创建的临时目录节点被删除,所有其他机器都收到通知:某个兄弟目录被删除。新机器加入也是类似,所有机器收到通知:新兄弟目录加入。
zookeeper学习笔记_第6张图片
(2)分布式锁
有了zookeeper的一致性文件系统,锁的问题变得容易。锁服务可以分为两类,一个是保持独占,另一个是控制时序。
对于第一类,我们将zookeeper上的一个znode看作是一把锁,通过createznode的方式来实现。所有客户端都去创建 /distribute_lock 节点,最终成功创建的那个客户端也即拥有了这把锁,用完删除掉自己创建的distribute_lock 节点就释放出锁。
对于第二类, /distribute_lock 已经预先存在,所有客户端在它下面创建临时顺序编号目录节点,和选master一样,编号最小的获得锁,用完删除。

3.数据同步

基本概念

  • 会话(Session):指zk客户端与zk服务器之间的会话,在zk中,会话是通过客户端和服务器之间的一个TCP长连接来实现的。通过这个长连接,客户端能够使用心跳检测与服务器保持有效的会话,也能向服务器发送请求并接收响应,还可接收服务器的Watcher事件通知。Session的sessionTimeout,是会话超时时间,如果这段时间内,客户端未与服务器发生任何沟通(心跳或请求),服务器端会清除该session数据,客户端的TCP长连接将不可用,这种情况下,客户端需要重新实例化一个Zookeeper对象。
  • 事务及ZXID:事务是指能够改变Zookeeper服务器状态的操作,一般包括数据节点的创建与删除、数据节点内容更新和客户端会话创建与失效等操作。对于每个事务请求,zk都会为其分配一个全局唯一的事务ID,即ZXID,是一个64位的数字,高32位表示该事务发生的集群选举周期(集群每发生一次leader选举,值加1),低32位表示该事务在当前选择周期内的递增次序(leader每处理一个事务请求,值加1,发生一次leader选择,低32位要清0)。
  • 事务日志:所有事务操作都是需要记录到日志文件中的,可通过dataLogDir配置文件目录,文件是以写入的第一条事务zxid为后缀,方便后续的定位查找。zk会采取“磁盘空间预分配”的策略,来避免磁盘Seek频率,提升zk服务器对事务请求的影响能力。默认设置下,每次事务日志写入操作都会实时刷入磁盘,也可以设置成非实时(写到内存文件流,定时批量写入磁盘),但那样断电时会带来丢失数据的风险。
  • 数据快照:数据快照是zk数据存储中另一个非常核心的运行机制。数据快照用来记录zk服务器上某一时刻的全量内存数据内容,并将其写入到指定的磁盘文件中,可通过dataDir配置文件目录。可配置参数snapCount,设置两次快照之间的事务操作个数,zk节点记录完事务日志时,会统计判断是否需要做数据快照(距离上次快照,事务操作次数等于snapCount/2~snapCount中的某个值时,会触发快照生成操作,随机值是为了避免所有节点同时生成快照,导致集群影响缓慢)。
  • 过半:所谓“过半”是指大于集群机器数量的一半,即大于或等于(n/2+1),此处的“集群机器数量”不包括observer角色节点。leader广播一个事务消息后,当收到半数以上的ack信息时,就认为集群中所有节点都收到了消息,然后leader就不需要再等待剩余节点的ack,直接广播commit消息,提交事务。选举中的投票提议及数据同步时,也是如此,leader不需要等到所有learner节点的反馈,只要收到过半的反馈就可进行下一步操作。
  • zk维护的数据:客户端的会话(session)状态及数据节点(dataNode)信息。zk在内存中构造了个DataTree的数据结构,维护着path到dataNode的映射以及dataNode间的树状层级关系。为了提高读取性能,集群中每个服务节点都是将数据全量存储在内存中。可见,zk最适于读多写少且轻量级数据(默认设置下单个dataNode限制为1MB大小)的应用场景。数据仅存储在内存是很不安全的,zk采用事务日志文件及快照文件的方案来落盘数据,保障数据在不丢失的情况下能快速恢复。

选主

zookeeper实现数据一致性的核心是ZAB协议(Zookeeper原子消息广播协议)。该协议需要做到以下几点:
(1)集群在半数以下节点宕机的情况下,能正常对外提供服务;
(2)客户端的写请求全部转交给leader来处理,leader需确保写变更能实时同步给所有follower及observer;
(3)leader宕机或整个集群重启时,需要确保那些已经在leader服务器上提交的事务最终被所有服务器都提交,确保丢弃那些只在leader服务器上被提出的事务,并保证集群能快速恢复到故障前的状态。
Zab协议有两种模式, 崩溃恢复(选主+数据同步)和消息广播(事务操作)。任何时候都需要保证只有一个主进程负责进行事务操作,而如果主进程崩溃了,就需要迅速选举出一个新的主进程。主进程的选举机制与事务操作机制是紧密相关的。下面详细讲解这三个场景的协议规则,从细节去探索ZAB协议的数据一致性原理。

leader选举是zk中最重要的技术之一,也是保证分布式数据一致性的关键所在。当集群中的一台服务器处于如下两种情况之一时,就会进入leader选举阶段——服务器初始化启动、服务器运行期间无法与leader保持连接。
选举阶段,集群间互传的消息称为投票,投票Vote主要包括二个维度的信息:ID、ZXID
ID 被推举的leader的服务器ID,集群中的每个zk节点启动前就要配置好这个全局唯一的ID。
ZXID 被推举的leader的事务ID ,该值是从机器DataTree内存中取的,即事务已经在机器上被commit过了。
节点进入选举阶段后的大体执行逻辑如下:
(1)设置状态为LOOKING,初始化内部投票Vote (id,zxid) 数据至内存,并将其广播到集群其它节点。节点首次投票都是选举自己作为leader,将自身的服务ID、处理的最近一个事务请求的ZXID(ZXID是从内存数据库里取的,即该节点最近一个完成commit的事务id)及当前状态广播出去。然后进入循环等待及处理其它节点的投票信息的流程中。
(2)循环等待流程中,节点每收到一个外部的Vote信息,都需要将其与自己内存Vote数据进行PK,规则为取ZXID大的,若ZXID相等,则取ID大的那个投票。若外部投票胜选,节点需要将该选票覆盖之前的内存Vote数据,并再次广播出去;同时还要统计是否有过半的赞同者与新的内存投票数据一致,无则继续循环等待新的投票,有则需要判断leader是否在赞同者之中,在则退出循环,选举结束,根据选举结果及各自角色切换状态,leader切换成LEADING、follower切换到FOLLOWING、observer切换到OBSERVING状态。
(算法细节可参照FastLeaderElection.lookForLeader())

选主后的数据同步

选主算法中的zxid是从内存数据库中取的最新事务id,事务操作是分两阶段的(提出阶段和提交阶段),leader生成提议并广播给followers,收到半数以上的ACK后,再广播commit消息,同时将事务操作应用到内存中。follower收到提议后先将事务写到本地事务日志,然后反馈ACK,等接到leader的commit消息时,才会将事务操作应用到内存中。可见,选主只是选出了内存数据是最新的节点,仅仅靠这个是无法保证已经在leader服务器上提交的事务最终被所有服务器都提交。比如leader发起提议P1,并收到半数以上follower关于P1的ACK后,在广播commit消息之前宕机了,选举产生的新leader之前是follower,未收到关于P1的commit消息,内存中是没有P1的数据。而ZAB协议的设计是需要保证选主后,P1是需要应用到集群中的。这块的逻辑是通过选主后的数据同步来弥补。
选主后,节点需要切换状态,leader切换成LEADING状态后的流程如下:
(1)重新加载本地磁盘上的数据快照至内存,并从日志文件中取出快照之后的所有事务操作,逐条应用至内存,并添加到已提交事务缓存commitedProposals。这样能保证日志文件中的事务操作,必定会应用到leader的内存数据库中。
(2)获取learner发送的FOLLOWERINFO/OBSERVERINFO信息,并与自身commitedProposals比对,确定采用哪种同步方式,不同的learner可能采用不同同步方式(DIFF同步、TRUNC+DIFF同步、SNAP同步)。这里是拿learner内存中的zxid与leader内存中的commitedProposals(min、max)比对,如果zxid介于min与max之间,但又不存在于commitedProposals中时,说明该zxid对应的事务需要TRUNC回滚;如果 zxid 介于min与max之间且存在于commitedProposals中,则leader需要将zxid+1~max 间所有事务同步给learner,这些内存缺失数据,很可能是因为leader切换过程中造成commit消息丢失,learner只完成了事务日志写入,未完成提交事务,未应用到内存。
(3)leader主动向所有learner发送同步数据消息,每个learner有自己的发送队列,互不干扰。同步结束时,leader会向learner发送NEWLEADER指令,同时learner会反馈一个ACK。当leader接收到来自learner的ACK消息后,就认为当前learner已经完成了数据同步,同时进入“过半策略”等待阶段。当leader统计到收到了一半已上的ACK时,会向所有已经完成数据同步的learner发送一个UPTODATE指令,用来通知learner集群已经完成了数据同步,可以对外服务了。
细节可参照Leader.lead() 、Follower.followLeader()及LearnerHandler类。

事务操作

ZAB协议对于事务操作的处理是一个类似于二阶段提交过程。针对客户端的事务请求,leader服务器会为其生成对应的事务proposal,并将其发送给集群中所有follower机器,然后收集各自的选票,最后进行事务提交。流程如下图。
zookeeper学习笔记_第7张图片
ZAB协议的二阶段提交过程中,移除了中断逻辑(事务回滚),所有follower服务器要么正常反馈leader提出的事务proposal,要么就抛弃leader服务器。follower收到proposal后的处理很简单,将该proposal写入到事务日志,然后立马反馈ACK给leader,也就是说如果不是网络、内存或磁盘等问题,follower肯定会写入成功,并正常反馈ACK。leader收到过半follower的ACK后,会广播commit消息给所有learner,并将事务应用到内存;learner收到commit消息后会将事务应用到内存。

你可能感兴趣的:(笔记,zookeeper)