题目给了一堆区间[起始位置,结束位置]
这些区间可能会有一些交叠的地方(边界相邻不算),现在要求找到一个方法,可以做最少的删除动作,使得剩下的区间都不交叉覆盖,返回那个需要删除的最少次数
解题思想(贪心法):
1、按照起始位置排序
2、按照顺序,两个指针遍历,一前一后,如果当前位置和上一个位置不冲突就顺序平移两个指针(后指针的值给前指针,然后后指针移动到下一位),如果冲突的话,那么前指针则变成当前两个指针当中覆盖最小的一个(贪心所在),后指针移动到下一个位置就好
Given a collection of intervals, find the minimum number of intervals you need to remove to make the rest of the intervals non-overlapping.
Note:
You may assume the interval's end point is always bigger than its start point.
Intervals like [1,2] and [2,3] have borders "touching" but they don't overlap each other.
Example 1:
Input: [ [1,2], [2,3], [3,4], [1,3] ]
Output: 1
Explanation: [1,3] can be removed and the rest of intervals are non-overlapping.
Example 2:
Input: [ [1,2], [1,2], [1,2] ]
Output: 2
Explanation: You need to remove two [1,2] to make the rest of intervals non-overlapping.
Example 3:
Input: [ [1,2], [2,3] ]
Output: 0
Explanation: You don't need to remove any of the intervals since they're already non-overlapping.
/**
* Definition for an interval.
* public class Interval {
* int start;
* int end;
* Interval() { start = 0; end = 0; }
* Interval(int s, int e) { start = s; end = e; }
* }
*/
public class Solution {
public int eraseOverlapIntervals(Interval[] intervals) {
// 按照起始位置进行排序
Arrays.sort(intervals,(x,y)->(x.start)-(y.start));
int count=0,j=0;
// 贪心法,如果上一个位置j和当前位置i冲突了,那么进行判断,如果当前位置的末尾小于上一个边界的末尾,那么删除上一个位置(因为覆盖的更少,每步选择最有可能不造成重复的),反之如果当前位置尾部覆盖的更多,那么就删除i的位置。删除的方式通过控制j的取值进行
for(int i=1;iif(intervals[j].end>intervals[i].start){
j=intervals[i].endelse
//没有重复
j=i;
}
return count;
}
}