http://acm.hdu.edu.cn/showproblem.php?pid=4324
Problem Description
Recently, scientists find that there is love between any of two people. For example, between A and B, if A don’t love B, then B must love A, vice versa. And there is no possibility that two people love each other, what a crazy world!
Now, scientists want to know whether or not there is a “Triangle Love” among N people. “Triangle Love” means that among any three people (A,B and C) , A loves B, B loves C and C loves A.
Your problem is writing a program to read the relationship among N people firstly, and return whether or not there is a “Triangle Love”.
Input
The first line contains a single integer t (1 <= t <= 15), the number of test cases.
For each case, the first line contains one integer N (0 < N <= 2000).
In the next N lines contain the adjacency matrix A of the relationship (without spaces). A
i,j = 1 means i-th people loves j-th people, otherwise A
i,j = 0.
It is guaranteed that the given relationship is a tournament, that is, A
i,i= 0, A
i,j ≠ A
j,i(1<=i, j<=n,i≠j).
Output
For each case, output the case number as shown and then print “Yes”, if there is a “Triangle Love” among these N people, otherwise print “No”.
Take the sample output for more details.
Sample Input
2 5 00100 10000 01001 11101 11000 5 01111 00000 01000 01100 01110
Sample Output
/**
hdu4324 dfs
题目大意:
判断是否存在点数为3的环。
解题思路:
dfs搜索即可,不做标记会TLE,dfs时做标记如果当前点u的下一个点v已经访问过了,
那么就判断dist[u]==dist[[v]+2,成立返回true,否则更新dist[v]=dist[u]+1,继续深搜。
*/
#include
#include
#include
#include
using namespace std;
char s[2005][2005];
int n,dist[2005];
struct note
{
int v,next;
} edge[2005*2005];
int head[2005],ip,flag[2005];
void init()
{
memset(head,-1,sizeof(head));
ip=0;
}
void addedge(int u,int v)
{
edge[ip].v=v,edge[ip].next=head[u],head[u]=ip++;
}
bool dfs(int u)
{
flag[u]=1;
for(int i=head[u]; i!=-1; i=edge[i].next)
{
int v=edge[i].v;
if(flag[v]&&dist[u]==dist[v]+2)
{
puts("Yes");
return 1;
}
else if(flag[v]==0)
{
dist[v]=dist[u]+1;
if(dfs(v))
return 1;
}
}
return 0;
}
int main()
{
int T,tt=0;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=0; i