Do you like painting? Little D doesn't like painting, especially messy color paintings. Now Little B is painting. To prevent him from drawing messy painting, Little D asks you to write a program to maintain following operations. The specific format of these operations is as follows.
00 : clear all the points.
11 xx yy cc : add a point which color is cc at point (x,y)(x,y).
22 xx y1y1 y2y2 : count how many different colors in the square (1,y1)(1,y1) and (x,y2)(x,y2). That is to say, if there is a point (a,b)(a,b) colored cc, that 1≤a≤x1≤a≤x and y1≤b≤y2y1≤b≤y2, then the color cc should be counted.
33 : exit.
Input
The input contains many lines.
Each line contains a operation. It may be '0', '1 x y c' ( 1≤x,y≤106,0≤c≤501≤x,y≤106,0≤c≤50 ), '2 x y1 y2' (1≤x,y1,y2≤1061≤x,y1,y2≤106 ) or '3'.
x,y,c,y1,y2x,y,c,y1,y2 are all integers.
Assume the last operation is 3 and it appears only once.
There are at most 150000150000 continuous operations of operation 1 and operation 2.
There are at most 1010 operation 0.
Output
For each operation 2, output an integer means the answer .
Sample Input
0 1 1000000 1000000 50 1 1000000 999999 0 1 1000000 999999 0 1 1000000 1000000 49 2 1000000 1000000 1000000 2 1000000 1 1000000 0 1 1 1 1 2 1 1 2 1 1 2 2 2 1 1 2 1 2 2 2 2 1 1 2 1 2 1 3 2 2 1 2 2 10 1 2 2 10 2 2 0 1 1 1 1 2 1 1 1 1 1 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 1 1 2 2 1 2 2 10 1 2 2 10 2 2 3
Sample Output
2 3 1 2 2 3 3 1 1 1 1 1 1 1
Sponsor
以颜色为根 开权值线段树 由于数据过大用到动态开点 也可以离线离散化
#include
using namespace std;
#define ll long long
const int maxn = 2e6 + 7;
const int inf = 1e6 + 5;
using namespace std;
struct node{
int l;
int r;
int v;
}tree[maxn << 1];
int rt[55];
int tot;
int f;
void update(int &rot, int l, int r, int pos, int val){
if(!rot){
rot = ++tot;
tree[rot].v = val;
}
tree[rot].v = min(tree[rot].v, val);
if(l == r)
return ;
int mid = (l + r) >> 1;
if(pos <= mid){
update(tree[rot].l, l, mid, pos, val);
}
else{
update(tree[rot].r, mid + 1, r, pos, val);
}
}
void query(int rot, int val, int x, int y, int l, int r){
if(f || !rot){
return;
}
if(l >= x && r <= y){
if(tree[rot].v <= val){
f = 1;
}
return;
}
int mid = (l + r) >> 1;
if(x <= mid){
query(tree[rot].l, val, x, y, l, mid);
}
if(y > mid){
query(tree[rot].r, val, x, y, mid + 1, r);
}
}
void solve(){
int opt;
while(cin >> opt){
if(opt == 3){
return ;
}
if(opt == 0){
for(int i = 1; i <= tot; i++){
tree[i].l = tree[i].r = tree[i].v = 0;
}
for(int i = 0; i <= 50; i++){
rt[i] = 0;
}
tot = 0;
}
if(opt == 1){
int x, y, c;
cin >> x >> y >> c;
update(rt[c], 1, inf, y, x);
}
if(opt == 2){
int ans = 0;
int x, y1, y2;
cin >> x >> y1 >> y2;
for(int i = 0; i <= 50; i++){
f = 0;
query(rt[i], x, y1, y2, 1, inf);
if(f)
ans++;
}
cout << ans << endl;
}
}
}
int main(){
ios::sync_with_stdio(0);
int t;
t = 1;
while(t--){
solve();
}
}