ISE约束--UCF编辑的入门介绍

http://www.openhw.org/yq000cn/blog/12-07/185475_6dce2.html

摘要:本文主要通过一个实例具体介绍ISE中通过编辑UCF文件来对FPGA设计进行约束,主要涉及到的约束包括时钟约束、群组约束、逻辑管脚约束以及物理属性约束。

Xilinx FPGA设计约束的分类

Xilinx定义了如下几种约束类型:

• “Attributes and Constraints”
• “CPLD Fitter”
• “Grouping Constraints”
• “Logical Constraints”
• “Physical Constraints”
• “Mapping Directives”
• “Placement Constraints”
• “Routing Directives”
• “Synthesis Constraints”
• “Timing Constraints”
• “Configuration Constraints”

通过编译UCF(user constraints file)文件可以完成上述的功能。

还是用实例来讲UCF的语法是如何的。

ISE约束--UCF编辑的入门介绍_第1张图片

图1 RTL Schematic

图1 是顶层文件RTL图,左侧一列输入,右侧为输出,这些端口需要分配相应的FPGA管脚。

   1: NET "pin_sysclk_i" LOC = AD12 | TNM_NET = pin_sysclk_i;
   2: TIMESPEC TS_pin_sysclk_i = PERIOD "pin_sysclk_i" 15 ns HIGH 50 %;
   3: #
   4: NET "pin_plx_lreset_n_i"  LOC = B18;
   5: #
   6: NET "pin_plx_lhold_i"  LOC = C17;
   7: NET "pin_plx_lholda_o" LOC = D17 | SLEW = FAST;
   8: #
   9: NET "pin_plx_ads_n_i"  LOC = E18;
  10: NET "pin_plx_ads_n_i" OFFSET = IN 6.3 ns AFTER "pin_sysclk_i" HIGH;
  11: #
  12: NET "pin_plx_lw_r_n_i"  LOC = E9;
  13: NET "pin_plx_lw_r_n_i" OFFSET = IN 6.3 ns AFTER "pin_sysclk_i" HIGH;
  14: #
  15: NET "pin_plx_blast_n_i"  LOC = D18;
  16: NET "pin_plx_blast_n_i" OFFSET = IN 6.3 ns AFTER "pin_sysclk_i" HIGH;
  17: #
  18: NET "pin_plx_lad_io<0>" LOC = AD13 | SLEW = FAST | TNM = LAD;
  19: NET "pin_plx_lad_io<1>" LOC = AC13 | SLEW = FAST | TNM = LAD;
  20: NET "pin_plx_lad_io<2>" LOC = AC15 | SLEW = FAST | TNM = LAD;
  21: NET "pin_plx_lad_io<3>" LOC = AC16 | SLEW = FAST | TNM = LAD;
  22: NET "pin_plx_lad_io<4>" LOC = AA11 | SLEW = FAST | TNM = LAD;
  23: NET "pin_plx_lad_io<5>" LOC = AA12 | SLEW = FAST | TNM = LAD;
  24: NET "pin_plx_lad_io<6>" LOC = AD14 | SLEW = FAST | TNM = LAD;
  25: NET "pin_plx_lad_io<7>" LOC = AC14 | SLEW = FAST | TNM = LAD;
  26: NET "pin_plx_lad_io<8>" LOC = AA13 | SLEW = FAST | TNM = LAD;
  27: NET "pin_plx_lad_io<9>" LOC = AB13 | SLEW = FAST | TNM = LAD;
  28: NET "pin_plx_lad_io<10>" LOC = AA15 | SLEW = FAST | TNM = LAD;
  29: NET "pin_plx_lad_io<11>" LOC = AA16 | SLEW = FAST | TNM = LAD;
  30: NET "pin_plx_lad_io<12>" LOC = AC11 | SLEW = FAST | TNM = LAD;
  31: NET "pin_plx_lad_io<13>" LOC = AC12 | SLEW = FAST | TNM = LAD;
  32: NET "pin_plx_lad_io<14>" LOC = AB14 | SLEW = FAST | TNM = LAD;
  33: NET "pin_plx_lad_io<15>" LOC = AA14 | SLEW = FAST | TNM = LAD;
  34: NET "pin_plx_lad_io<16>" LOC = D12 | SLEW = FAST | TNM = LAD;
  35: NET "pin_plx_lad_io<17>" LOC = E13 | SLEW = FAST | TNM = LAD;
  36: NET "pin_plx_lad_io<18>" LOC = C16 | SLEW = FAST | TNM = LAD;
  37: NET "pin_plx_lad_io<19>" LOC = D16 | SLEW = FAST | TNM = LAD;
  38: NET "pin_plx_lad_io<20>" LOC = D11 | SLEW = FAST | TNM = LAD;
  39: NET "pin_plx_lad_io<21>" LOC = C11 | SLEW = FAST | TNM = LAD;
  40: NET "pin_plx_lad_io<22>" LOC = E14 | SLEW = FAST | TNM = LAD;
  41: NET "pin_plx_lad_io<23>" LOC = D15 | SLEW = FAST | TNM = LAD;
  42: NET "pin_plx_lad_io<24>" LOC = D13 | SLEW = FAST | TNM = LAD;
  43: NET "pin_plx_lad_io<25>" LOC = D14 | SLEW = FAST | TNM = LAD;
  44: NET "pin_plx_lad_io<26>" LOC = F15 | SLEW = FAST | TNM = LAD;
  45: NET "pin_plx_lad_io<27>" LOC = F16 | SLEW = FAST | TNM = LAD;
  46: NET "pin_plx_lad_io<28>" LOC = F11 | SLEW = FAST | TNM = LAD;
  47: NET "pin_plx_lad_io<29>" LOC = F12 | SLEW = FAST | TNM = LAD;
  48: NET "pin_plx_lad_io<30>" LOC = F13 | SLEW = FAST | TNM = LAD;
  49: NET "pin_plx_lad_io<31>" LOC = F14 | SLEW = FAST | TNM = LAD;
  50: TIMEGRP "LAD" OFFSET = IN 6.4 ns AFTER "pin_sysclk_i" HIGH;
  51: TIMEGRP "LAD" OFFSET = OUT 3.1 ns BEFORE "pin_sysclk_i" HIGH;
  52: #
  53: NET "pin_plx_ready_n_o" LOC = F18 | SLEW = FAST;
  54: NET "pin_plx_ready_n_o" OFFSET = OUT 4.2 ns BEFORE "pin_sysclk_i" HIGH;
  55: #
  56: NET "pin_plx_bterm_n_o" LOC = D10 | SLEW = FAST;
  57: NET "pin_plx_bterm_n_o" OFFSET = OUT 4.2 ns BEFORE "pin_sysclk_i" HIGH;
  58: #
  59: NET "pin_led_o<0>" LOC = D22;
  60: NET "pin_led_o<1>" LOC = C22;
  61: NET "pin_led_o<2>" LOC = E21;
  62: NET "pin_led_o<3>" LOC = D21;
  63: NET "pin_led_o<4>" LOC = C21;
  64: NET "pin_led_o<5>" LOC = B24;
  65: NET "pin_led_o<6>" LOC = C20;
  66: NET "pin_led_o<7>" LOC = B23;

表1. UCF example

对上面的UCF文件进行一些注释:

该UCF文件主要是完成了管脚的约束、时钟的约束,以及组的约束。

第一、二行:主要定义了时钟以及对应的物理管脚。

第一行,端口pin_sysclk_i 分配到FPGA管脚AD12,并放到了 pin_sysclk_i group中。那如何得知是AD12的管脚呢,请看图2,FPGA管脚AD12 是一个66MHz的外部时钟。FPGA的开发板肯定有电路原理图供你分配外部管脚。

image

图2,电路原理图

第二行:时钟说明:周期15ns,占空比50%。关键词TIMESPEC(Timing Specifications),即时钟说明。一般的语法是:
TIMESPEC "TSidentifier"=PERIOD "timegroup_name" value [units];

其中TSidentifier用来指定TS(时钟说明)的唯一的名称。

第七行:pin_plx_lholda_o 连接至物理管脚 D17, 并配置该管脚电平变化的速率。关键词:SLEW,用来定义电平变化的速率的,一般语法是:

       NET "top_level_port_nameSLEW="value";
       其中value = {FAST|SLOW|QUIETIO}, QUIETIO仅用在Spartan-3A。

第十行:定义pin_plx_ads_n_i 输入跟时钟的关系。OFFSET IN和OFFSET OUT的约束。OFFSET IN 定义了数据输入的时间和接收数据时钟沿(capture Edge)的关系。

一般的语法是:OFFSET = IN value VALID value BEFORE clock

                  OFFSET OUT value VALID value AFTER clock

ISE约束--UCF编辑的入门介绍_第2张图片

图3 时序图(OFFSET IN)

例子:
NET "SysCLk" TNM_NET = "SysClk";
TIMESPEC "TS_SysClk" = PERIOD "SysClk" 5 ns HIGH 50%;
OFFSET = IN 5 ns VALID 5 ns BEFORE "SysClk";

上面的定义了基于SysClk的全局OFFSET IN的属性。时序可看图3.

ISE约束--UCF编辑的入门介绍_第3张图片

图4 时序图(OFFSET OUT)

例子:

NET "ClkIn" TNM_NET = "ClkIn";
OFFSET = OUT 5 ns AFTER "ClkIn";

上面设置主要是定了了时钟跟数据的时间关系,时序图4。可以看到这时一种全局定义,Data1 和Data2输出时间都受到 OFFSET = OUT 5 ns AFTER "ClkIn" 的约束。如果需要单独定义输出端口的OFFSET OUT的,需要制定相应的NET,可参考表1中的第57行。

第18至49行:pin_plx_lad_io<*> 被归到了名称为LAD的TMN(Timing name),这个可以说是GROUP的约束。这样往往给约束带来方便,不用一个一个的NET 或者INST进行约束。

第50至51行:对TIMEGRP 是LAD进行OFFSET IN和OUT的定义。

在时序约束中,在这里还未提及FROM TO的约束。FROM TO的约束主要是用来两个同步模块之间的时间关系的约束。在这里不做深入的讨论。

至此,基本上把一般的UCF文件的作用进行了注释。

注:一般的时间的约束需要通过静态的时序分析,然后再设定相应PERIOD,OFFSET IN 以及OFFEET OUT等的时间参数。

当然在例子中还没有涉及到区域的约束。下面会试图说一下。

ISE进行综合后会将设计代码生成相应的逻辑网表,然后经过translate过程,转换到Xilinx特定的底层结构和硬件原语,MAP过程就是将映射到具体型号的器件上,最后就是就是布线和布局的操作了。

区域的约束相当于将布局过程中指定特定型号的器件的位置,这完全可以通过FloorPlanner的GUI界面进行设置,用图形界面设置完后,配置信息会放到UCF中,这里只介绍UCF的使用。

例如:

INST "Done" LOC = "SLICE_X32Y163" ;    #Done映射为一个寄存器,映射到SLICE_X32Y163的位置上。(32,163)相当于一个坐标,可以用FloorPlanner进行查看。
INST"BRAM4/BU2/U0/blk_mem_generator/valid.cstr/ramloop[0].ram.r/v4_init.ram/TRUE_DP.SINGLE_PRIM.TDP"LOC = "RAMB16_X2Y22" ; #RAM16的一个映射。

又例如,X,Y,Z是对应的是寄存器。现在想把它们放在一个指定的区域中,我可以这样写,

INST “X” AREA_GROUP = reg;

INST “X” AREA_GROUP = reg;

INST “X” AREA_GROUP = reg;

AREA_GROUP reg RANGE = SLICE_X1Y1 :SLICE_X1Y6;

注:如何查看INST中的名称呢?在ISE中 Timing constraints editor中可以查看。

注:NET,LOC,TNM_NET,TIMESPEC,PERIOD,OFFSET,IN,OUT,SLEW,HIGH等都是关键字,UCF文件是大小敏感的,端口名称必须和源代码中的名字一致,且端口名字不能和关键字一样。但是关键字NET是不区分大小写的。

其实上述都是约束的入门的内容,如果要想深入的了解的话,请参考Ref1。

笔者也是初学者,如果有什么不对的地方,请批评指正。

我的邮箱是: [email protected]

 Ref:

1.Constraints Guide(10.1),Xilinx
2.ISE 约束文件完整讲解
3.如何在FPGA设计环境中加时序约束
4.Xilinx ISE所涉及的一些命令以及Command Line的使用
5. http://www.xilinx.com/support/documentation/white_papers/wp237.pdf


时序约束的语法(也可通过constraint editor约束)

UCF文件中时序约束的语法

约束UCF文件,从Constrains Editor直接输入是最方便、最直接的添加约束的方法了。以下是几种常用的语法:

1)周期约束

PERIOD约束是一个基本时序和综合约束,它附加在时钟网线上,时序分析工具根据PERIOD约束检查时钟域内所有同步元件的时序是否满足要求,它将检查与同步时序约束端口相连接的所有路径的延迟,但是不会检查PAD到寄存器的路径。

附加时钟周期约束的首选方法(Preferred Method)语法如下:

TIMESPEC “TS_identifier” = PERIOD “TNM_reference” period {HIGH|LOW} [high_or_low_time]

其中“[]”内为可选项,“{}”为必选项,参数period为要求的时钟周期,可以使用ps、ns、us或者ms等单位,大小写都可以,缺省单位 为ns。HIGH|LOW关键词指出时钟周期里的第一个脉冲是高电平还是低电平,而high_or_low_time为脉冲的延续时间,缺省单位也是 ns,如果不提供该项,则缺省占空比为50%。

TIMESPEC是一个基本时序相关约束标识,表示本约束为时序规范。TSidentifier包括字母TS和一个标识符identifier(为ASCII码字符串)共同组成一个时序规范。

例如定义时钟周期约束时,首先在时钟网线clk上附加一个TNM_NET约束,把clk驱动的所有同步元件定义为一个名为sys_clk的分组,然后使用TIMESPEC约束定义时钟周期。

NET “clk” TNM_NET=”sys_clk”;                                  #定义clk驱动的所有同步元件为sys_clk的分组

TIMESPEC “TS_sys_clk”= PERIOD “sys_clk” 50 HIGH 30;                #定义可引用的时序规范TS_sys_clk,

#这个规范规定sys_clk组的时钟情况

而定义派生时钟的语法如下:

TIMESPEC “TSidentifier_2”=PERIOD “timegroup_name” “TSidentifier_1” [*or/] factor PHASE [+|-] phase_value [units];          #定义第二个时序规范TSidentifier_2,其内容是名为timegroup_name的分组是第

#一个时序规范TSidentifier_1派生的

其中TSidentifier_2为要定义的派生时钟,TSidentifier_1为已经定义的时钟,factor指出两者周期的辈数关系,是一个浮点数。phase_value指出两者之间的相位关系,为浮点数。例如:

定义主时钟clk0:

TIMESPEC “TS01” = PERIOD “clk0” 10.0 ns;

定义派生时钟clk180,其相位与主时钟相差180°:

TIMESPEC “TS02” = PERIOD “clk180” TS01 PHASE + 5.0 ns;

定义派生时钟clk180_2,其周期为主时钟的1/2,并延迟2.5ns:

TIMESPEC “TS03” = PERIOD “clk180_2” TS01 /2 PHASE + 2.5 ns;

2)偏移约束

偏移约束规定了外部时钟和数据输入输出引脚之间的时序关系,只用于与PAD相连的(端口)信号,不能用于内部信号。使用该约束可以为综合实现工具指 出输入数据到达的时刻,或者输出数据稳定的时刻,从而在综合实现中调整布局布线过程,使正在开发的FPGA/CPLD的输入建立时间以及下一级电路的输入 建立时间满足要求。

基本语法如下:

OFFSET = {IN|OUT} “offset_time” [units] {BEFORE|AFTER} “clk_name” [TIMEGRP “group_name”];

其中{IN|OUT}说明约束的是输入还是输出,offset_time为FPGA引脚数据变化与有效时钟沿之间的时间 差,BEFORE|AFTER说明该时间差在有效时钟沿的前面还是后面,TIMEGRP “group_name”定义了约束的触发器组,缺省时约束该时钟驱动的所有触发器。

3)分组约束

使用TNM(Timing Name)约束可以选出构成一个分组的元件,并赋予一个名字,以便给它们附加约束。TNM_NET(timing name for nets)约束只加在网线上,其作用与TNM加在网上时基本相同,即把该网线所在路径上的所有有效同步元件作为命名组的一部分。不同之处在于当TNM约束 加在PAD NET上时,TNM的值将被赋予PAD,而不是该网线所在的路径上的同步元件,即TNM约束不能穿过IBUF。而用TNM_NET约束就不会出现这种情 况。

4)专门约束

附加约束的一般策略是首先附加整体约束,例如PERIOD、OFFSET等,然后对局部的电路附加专门约束,这些专门约束通常比整体约束宽松,通过在可能的地方尽量放松约束可以提高布线通过率,减小布局布线的时间。

FROM_TO约束在两个组之间定义时序约束,对两者之间的逻辑和布线延迟进行控制,这两个组可以是用户定义的,也可以是与定义的。用户可以使用TNM_NET、TNM和TIMEGRP定义组,而与定义组主要包括FFS、LATCHES、PADS和RAMS等。语法如下:

TIMESPEC “TSname” = FROM “group1” TO “group2” value;

其中value为延迟时间,可以使具体数值或表达式。

MAXDELAY约束定义了特定网线上的最大延迟,其语法如下:

NET “net_name” MAXDELAY = value units;


你可能感兴趣的:(fpga)