一.scrapy分页处理
1.分页处理
如上篇博客,初步使用了scrapy框架了,但是只能爬取一页,或者手动的把要爬取的网址手动添加到start_url中,太麻烦
接下来介绍该如何去处理分页,手动发起分页请求
爬虫文件.py
# -*- coding: utf-8 -*-
import scrapy
from qiubaiPage.items import QiubaiproItem
class QiubaiSpider(scrapy.Spider):
name = 'qiubai'
# allowed_domains = ['www.xxx.com']
start_urls = ['https://www.qiushibaike.com/text/']
url='https://www.qiushibaike.com/text/page/%d/'
page_num=1
# 2.基于管道的持久化存储(基于管道的持久化存储必须写下管道文件当中)
def parse(self,response):
div_list=response.xpath('//div[@id="content-left"]/div')
for div in div_list:
try :
author = div.xpath('./div[1]/a[2]/h2/text()')[0].extract()
except Exception as e:
print(e)
continue
content = div.xpath('./a[1]/div/span//text()').extract()
content = ''.join(content)
# 实例话一个item对象(容器)
item = QiubaiproItem()
item['author'] = author
item['content'] = content
# 返回给pipline去持久化存储
yield item
if self.page_num<10: #发起请求的条件
self.page_num+=1
url=(self.url%self.page_num)
#手动发起请求,调用parse再去解析
yield scrapy.Request(url=url,callback=self.parse)
items.py
import scrapy
class QiubaiproItem(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field()
author=scrapy.Field()
content=scrapy.Field()
pipline.py
class QiubaipagePipeline(object):
f = None
# 开启爬虫时执行程序执行一次,重写父类的方法,可以开启数据库等,要记得参数有一个spider不要忘记了
def open_spider(self, spider):
self.f = open('./qiushibaike.txt', 'w', encoding='utf-8')
# 提取处理数据(保存数据)
def process_item(self, item, spider):
self.f.write(item['author'] + ':' + item['content'] + '\n')
return item
# .关闭爬虫时执行也是只执行一次,重写父类方法,可以关闭数据库等,重写父类要要有参数spider,不要忘记了
def colse_spider(self, spider):
self.f.close()
注意:要基于管道存储要记得去settings.py把注释放开
2.post请求
- 问题:在之前代码中,我们从来没有手动的对start_urls列表中存储的起始url进行过请求的发送,但是起始url的确是进行了请求的发送,那这是如何实现的呢?
- 解答:其实是因为爬虫文件中的爬虫类继承到了Spider父类中的start_requests(self)这个方法,该方法就可以对start_urls列表中的url发起请求:
def start_requests(self): for u in self.start_urls: yield scrapy.Request(url=u,callback=self.parse)
【注意】该方法默认的实现,是对起始的url发起get请求,如果想发起post请求,则需要子类重写该方法
def start_requests(self): #请求的url post_url = 'http://fanyi.baidu.com/sug' # post请求参数 formdata = { 'kw': 'wolf', } # 发送post请求 yield scrapy.FormRequest(url=post_url, formdata=formdata, callback=self.parse)
3.cookies处理
对于cookies的处理就是不用处理,直接去settings.py把cookies的相关配置放开就行
4.请求传参之中间件代理池使用
一.下载中间件(Downloader Middlewares) 位于scrapy引擎和下载器之间的一层组件。
- 作用:
(1)引擎将请求传递给下载器过程中, 下载中间件可以对请求进行一系列处理。比如设置请求的 User-Agent,设置代理等
(2)在下载器完成将Response传递给引擎中,下载中间件可以对响应进行一系列处理。比如进行gzip解压等。
我们主要使用下载中间件处理请求,一般会对请求设置随机的User-Agent ,设置随机的代理。目的在于防止爬取网站的反爬虫策略。
二.UA池:User-Agent池
- 作用:尽可能多的将scrapy工程中的请求伪装成不同类型的浏览器身份。
- 操作流程:
1.在下载中间件中拦截请求
2.将拦截到的请求的请求头信息中的UA进行篡改伪装
3.在配置文件中开启下载中间件
请求传参的使用:首先要你要明白整个scrapy模块的使用流程:在下载器和引擎之间有个下载中间件,他可以拦截到所有的请求对象和所有的响应对象,包括异常的请求和异常的响应.
这就我们提供了便利-------->使用袋里池--------->把请求对象兰拦截下来,给他换一个ip地址,再把请求对象向网络发布出去!
还有一个要注意的是要去settings.py文件中把中间件相关的配置放开
middleware.py
#下载中间件class QiubaipageDownloaderMiddleware(object): # Not all methods need to be defined. If a method is not defined,
# scrapy acts as if the downloader middleware does not modify the
# passed objects.
@classmethod
def from_crawler(cls, crawler):
# This method is used by Scrapy to create your spiders.
s = cls()
crawler.signals.connect(s.spider_opened, signal=signals.spider_opened)
return s
#拦截请求
def process_request(self, request, spider):
request.meta['proxy'] = 'https://60.251.156.116:8080'
print('this is process_request!!!')
# Called for each request that goes through the downloader
# middleware.
# Must either:
# - return None: continue processing this request
# - or return a Response object
# - or return a Request object
# - or raise IgnoreRequest: process_exception() methods of
# installed downloader middleware will be called
return None
#拦截响应
def process_response(self, request, response, spider):
# Called with the response returned from the downloader.
# Must either;
# - return a Response object
# - return a Request object
# - or raise IgnoreRequest
return response
#拦截异常
def process_exception(self, request, exception, spider):
# Called when a download handler or a process_request()
# (from other downloader middleware) raises an exception.
# Must either:
# - return None: continue processing this exception
# - return a Response object: stops process_exception() chain
# - return a Request object: stops process_exception() chain
request.meta['proxy'] = 'https://60.251.156.116:8080' #可以把多个代理封装成列表对象,请求时随机抽出一个来形成一个代理池
print('this is process_exception!!!')
5.请求传参之递归请求网页数据
在某些情况下,我们爬取的数据不在同一个页面中,例如,我们爬取一个电影网站,电影的名称,评分在一级页面,而要爬取的其他电影详情在其二级子页面中。
这时我们就需要用到请求传参。
爬虫文件.py # -*- coding: utf-8 -*- import scrapy from bossPro.items import BossproItem class BossSpider(scrapy.Spider): name = 'boss' # allowed_domains = ['www.xxx.com'] start_urls = [ 'https://www.zhipin.com/job_detail/?query=python%E7%88%AC%E8%99%AB&scity=101280600&industry=&position='] def parse(self, response): li_list = response.xpath('//div[@class="job-list"]/ul/li') for li in li_list: job_title = li.xpath('.//div[@class="job-title"]/text()').extract_first() company = li.xpath('.//div[@class="company-text"]/h3/a/text()').extract_first() #那子网页url detail_url = 'https://www.zhipin.com' + li.xpath('.//div[@class="info-primary"]/h3/a/@href').extract_first() # detail_url = 'https://www.zhipin.com' + li.xpath('.//div[@class="info-primary"]/h3/a/@href').extract_first() # 实例化一个item对象 item = BossproItem() item["job_title"] = job_title item['company'] = company # 把item传给下一个解析函数,请求传参 yield scrapy.Request(url=detail_url, callback=self.detail_parse, meta={'item': item}) #二级网页解析 #要通过以及解析把item传过来我才能把数据装到容器里面 def detail_parse(self, response): item = response.meta["item"] job_detail= response.xpath('//*[@id="main"]/div[3]/div/div[2]/div[2]/div[1]/div//text()').extract() job_detail=''.join(job_detail) item['job_detail']=job_detail #记得要返回,要不然pipline拿不到东西 yield item
settings.py
#robts协议
#pipiline
#ua
都要设置好
items.py
import scrapy
class BossproItem(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field()
job_title=scrapy.Field()
company= scrapy.Field()
job_detail = scrapy.Field()