- 【JS】执行时长(100分) |思路参考+代码解析(C++)
l939035548
JS算法数据结构c++
题目为了充分发挥GPU算力,需要尽可能多的将任务交给GPU执行,现在有一个任务数组,数组元素表示在这1秒内新增的任务个数且每秒都有新增任务。假设GPU最多一次执行n个任务,一次执行耗时1秒,在保证GPU不空闲情况下,最少需要多长时间执行完成。题目输入第一个参数为GPU一次最多执行的任务个数,取值范围[1,10000]第二个参数为任务数组长度,取值范围[1,10000]第三个参数为任务数组,数字范围
- Faiss Tips:高效向量搜索与聚类的利器
焦习娜Samantha
FaissTips:高效向量搜索与聚类的利器faiss_tipsSomeusefultipsforfaiss项目地址:https://gitcode.com/gh_mirrors/fa/faiss_tips项目介绍Faiss是由FacebookAIResearch开发的一个用于高效相似性搜索和密集向量聚类的库。它支持多种硬件平台,包括CPU和GPU,能够在海量数据集上实现快速的近似最近邻搜索(AN
- 2021-06-07 Do What You Are Meant To Do
春生阁
Don’tgiveupontryingtofindbalanceinyourlife.Sticktoyourpriorities.Rememberwhat’smostimportanttoyouanddoeverythingyoucantoputyourselfinapositionwhereyoucanfocusonthosepriorities,ratherthanbeingpulledbyt
- Python(PyTorch)和MATLAB及Rust和C++结构相似度指数测量导图
亚图跨际
Python交叉知识算法量化检查图像压缩质量低分辨率多光谱峰值信噪比端到端优化图像压缩手术机器人三维实景实时可微分渲染重建三维可视化
要点量化检查图像压缩质量低分辨率多光谱和高分辨率图像实现超分辨率分析图像质量图像索引/多尺度结构相似度指数和光谱角映射器及视觉信息保真度多种指标峰值信噪比和结构相似度指数测量结构相似性图像分类PNG和JPEG图像相似性近似算法图像压缩,视频压缩、端到端优化图像压缩、神经图像压缩、GPU变速图像压缩手术机器人深度估计算法重建三维可视化推理图像超分辨率算法模型三维实景实时可微分渲染算法MATLAB结构
- 深度学习-13-小语言模型之SmolLM的使用
皮皮冰燃
深度学习深度学习
文章附录1SmolLM概述1.1SmolLM简介1.2下载模型2运行2.1在CPU/GPU/多GPU上运行模型2.2使用torch.bfloat162.3通过位和字节的量化版本3应用示例4问题及解决4.1attention_mask和pad_token_id报错4.2max_new_tokens=205参考附录1SmolLM概述1.1SmolLM简介SmolLM是一系列尖端小型语言模型,提供三种规
- 【大模型】triton inference server
idiotyi
大模型自然语言处理语言模型人工智能
前言:tritoninferenceserver常用于大模型部署,可以采用http或GRPC调用,支持大部分的backend,单GPU、多GPU都可以支持,CPU也支持。本文主要是使用tritoninferenceserver部署大模型的简单流程示例。目录1.整体流程2.搭建本地仓库3.服务端代码4.启动服务5.客户端调用1.整体流程搭建模型仓库模型配置服务端调用代码docker启动服务客户端调用
- Upstage 将发布新一代 LLM “Solar Pro “预览版
吴脑的键客
人工智能人工智能
SolarPro是最智能的LLM,经过优化可在单GPU上运行,性能超过微软、Meta和谷歌等科技巨头的模型。加州圣何塞2024年9月11日电/美通社/–Upstage今天宣布发布其下一代大型语言模型(LLM)SolarPro的预览版。加州圣何塞2024年9月11日电/美通社/–Upstage今天宣布发布其下一代大型语言模型(LLM)SolarPro的预览版。该预览版作为开源模型免费提供API访问,
- 使用vllIm部署大语言模型
添砖JAVA的小墨
机器学习
使用vllm部署大语言模型一般需要以下步骤:一、准备工作1.系统要求-操作系统:常见的Linux发行版(如Ubuntu、CentOS)或Windows(通过WSL)。-GPU支持:NVIDIAGPU并安装了适当的驱动程序。-足够的内存和存储空间。2.安装依赖-Python3.8及以上版本。-CUDA工具包(根据GPU型号选择合适的版本)。二、安装vllm1.创建虚拟环境(推荐)-使用Conda:c
- 大模型框架:vLLM
m0_37559973
大模型大模型通义千问Qwen
目录一、vLLM介绍二、安装vLLM2.1使用GPU进行安装2.2使用CPU进行安装2.3相关配置三、使用vLLM3.1离线推理3.2适配OpenAI-API的API服务一、vLLM介绍vLLM是伯克利大学LMSYS组织开源的大语言模型高速推理框架。它利用了全新的注意力算法「PagedAttention」,提供易用、快速、便宜的LLM服务。二、安装vLLM2.1使用GPU进行安装vLLM是一个Py
- 天下苦英伟达久矣!PyTorch官方免CUDA加速推理,Triton时代要来?
诗者才子酒中仙
物联网/互联网/人工智能/其他pytorch人工智能python
在做大语言模型(LLM)的训练、微调和推理时,使用英伟达的GPU和CUDA是常见的做法。在更大的机器学习编程与计算范畴,同样严重依赖CUDA,使用它加速的机器学习模型可以实现更大的性能提升。虽然CUDA在加速计算领域占据主导地位,并成为英伟达重要的护城河之一。但其他一些工作的出现正在向CUDA发起挑战,比如OpenAI推出的Triton,它在可用性、内存开销、AI编译器堆栈构建等方面具有一定的优势
- Unity3D GPUDriven渲染详解
Thomas_YXQ
开发语言Unity3D架构游戏Unity
前言Unity3D中的GPUDriven渲染技术是一种通过最大化GPU的利用,减少CPU负担,从而提高渲染效率和帧率的方法。其核心思想是将更多的渲染任务转移到GPU上,充分利用现代图形硬件(显卡)的性能。以下是该技术的几个关键组件和它们的作用:对惹,这里有一个游戏开发交流小组,大家可以点击进来一起交流一下开发经验呀!1.BatchRendererGroup(BRG)BRG是Unity中用于批处理渲
- 1. 下载安装RKNN的docker镜像
jcfszxc
RKNN系列c++Rockchip
安装好docker:1.Docker的安装进入网盘,下载镜像文件:网盘链接:https://console.zbox.filez.com/l/I00fc3密码:rknn下载最新的版本,当前最新版本2.1.0,([[2024-09-01]]):下载路径:GPU-Group01的分享/RKNPU2SDK/2.1.0/release/rknn-toolkit2-2.1.0-cp38-docker.tar
- 【ShuQiHere】小白也能懂的 TensorFlow 和 PyTorch GPU 配置教程
ShuQiHere
tensorflowpytorch人工智能
【ShuQiHere】在深度学习中,GPU的使用对于加速模型训练至关重要。然而,对于许多刚刚入门的小白来说,如何在TensorFlow和PyTorch中指定使用GPU进行训练可能会感到困惑。在本文中,我将详细介绍如何在这两个主流的深度学习框架中指定使用GPU进行训练,并确保每一个步骤都简单易懂,跟着我的步骤来,你也能轻松上手!1.安装所需库首先,确保你已经安装了TensorFlow或PyTorch
- 项目实战 ---- 商用落地视频搜索系统(10)---后台搜索Cache优化
PhoenixAI8
AIPython商用视频搜索系统vectordbmilvusrediscache
目录背景技术实现策略视频预处理阶段的cache技术视频搜索阶段的cache技术技术实现预处理阶段cache策略实现逻辑代码运行结果问题及注意点搜索阶段cache策略实现系统配置层面逻辑低版本GPUCPU本项目的配置高版本描述goahead策略cache加载策略本项目配置应用层搜索参数的配置配置项本项目的实际配置背景但目前为止,视频搜索系统已经可以正常使用和运转。并且他是基于多策略搜索算法的,能够在
- TensorFlow的基本概念以及使用场景
张柏慈
决策树
TensorFlow是一个机器学习平台,用于构建和训练机器学习模型。它使用图形表示计算任务,其中节点表示数学操作,边表示计算之间的数据流动。TensorFlow的主要特点包括:1.多平台支持:TensorFlow可以运行在多种硬件和操作系统上,包括CPU、GPU和移动设备。2.自动求导:TensorFlow可以自动计算模型参数的梯度,通过优化算法更新参数,以提高模型的准确性。3.分布式计算:Ten
- RTX 4090深度学习性能实测奉上!模型训练可提升60~80%
赋创小助手
服务器深度学习人工智能图像处理自动驾驶
近期,我们对RTX4090涡轮版进行了完整的整机测试,本篇文章将分别围绕单卡,4卡,8卡RTX4090性能测试结果展开分享,以全面评估其相比上代RTX30系列的性能优势。首先让我们一起看看本次测试的硬件配置。测试硬件配置简单介绍一下本次使用的平台为超微SYS-420GP-TNR,这款GPU系统针对AI和图形密集型工作负载的灵活设计,4U双处理器(第三代英特尔®至强®),双根GPU系统,最多10个P
- 深度学习的零碎知识点
csdn_now
深度学习人工智能
显卡内存什么是显卡内存简单来说就是,Windows会在物理显存/「专用GPU内存」不够用或只有集成显卡的情况下,将物理内存RAM当作GPU的虚拟显存/「共享GPU内存」来使用。什么是Windows「共享GPU内存」,它与VRAM有什么不同(sysgeek.cn)平常说的显卡内存就是【专用GPU内存】。如何查看内存大小Win10任务管理器中的"专用GPU内存"是怎么回事?“共享GPU内存”又是什么?
- GPU版pytorch安装
普通攻击往后拉
pythontips神经网络基础模型关键点
由于经常重装系统,导致电脑的环境需要经常重新配置,其中尤其是cudatorch比较难以安装,因此记录一下安装GPU版本torch的过程。1)安装CUDAtoolkit这个可以看做是N卡所有cuda计算的基础,一般都会随驱动的更新自动安装,但是不全,仍然需要安装toolkit,并不需要先看已有版本是哪个,反正下载完后会自动覆盖原有的cuda。下载网站两个:国内网站:只能下载最新的toolkit,但是
- 人工智能-GPU版本机器学习、深度学习模型安装
bw876720687
人工智能机器学习深度学习
背景1、在有Nvidia-GPU的情况下模型使用cuda加速计算,但是很有多模型的GPU和CPU版本安装方式不同,如何安装lgb\cat\xgb.2、为了让代码有普适性,如何自适应环境当中的设备进行CPU或者GPU的调整?解决方案问题一:安装GPU版本的LightGBMLightGBM默认不会安装GPU支持版,需要手动编译以启用GPU。以下是在Linux和Windows上编译GPU版本LightG
- 入门篇,带你了解CPU, GPU, TPU, NPU, DPU
今夕是何年,
视觉算法部署深度学习算法人工智能
目录CPU(中央处理器)GPU(图形处理器)TPU(张量处理单元)NPU(神经网络处理器)DPU(数据处理器)CPU(中央处理器)专业介绍:CPU是计算机系统的核心,负责执行操作系统和应用程序的指令。它由多个核心组成,每个核心可以独立执行任务。CPU的设计重点是处理复杂的逻辑运算和顺序任务,如分支预测、指令调度等。现代CPU通常包含多个层级的缓存(如L1、L2和L3缓存),以减少访问主存储器的延迟
- LLM大模型学习:LLM大模型推理加速
七七Seven~
学习人工智能transformer深度学习llama
文Mia/叶娇娇推理优化部署、推理加速技术是现在,尤其在大模型时代背景之下,消费级GPU和边端设备仍为主流的状况下。推理加速是实际工程落地的首要考虑因素之一,今天笔者来聊聊涉及到的可以实现大模型推理加速的技术。目录一、模型优化技术二、模型压缩技术三、硬件加速四、GPU加速五、模型并行化和分布式计算技术一、模型优化学习常见的模型优化技术,如模型剪枝、量化、分片、蒸馏等,掌握相应的实现方法。1.1剪枝
- 鸿蒙(API 12 Beta6版)GPU加速引擎服务【自适应VRS】
移动开发技术栈
鸿蒙开发harmonyos华为openharmony鸿蒙鸿蒙系统VRS引擎
XEngineKit提供自适应VRS功能,其通过合理分配画面的计算资源,视觉无损降低渲染频次,使不同的渲染图像使用不同的渲染速率,能够有效提高渲染性能。接口说明以下接口为自适应VRS设置接口,如要使用更丰富的设置和查询接口。接口名描述constGLubyte*HMS_XEG_GetString(GLenumname)XEngineGLES扩展特性查询接口。GL_APICALLvoidGL_APIE
- 安装tensorflow2.5.0 发现 tensorflow 和 numba 两者对应Numpy版本冲突
GJK_
tensorflownumpy人工智能
问题:python3.8安装tensorflow2.5.0发现tensorflow和numba两者对应Numpy版本冲突tensorflow-gpu2.5.0requiresnumpy~=1.19.2numba0.58.1requiresnumpy=1.22解决方法:将numba降低版本为0.53pipinstallnumba==0.53再将numpy版本改为1.19.2pipinstallnum
- 本地部署大语言模型详细讲解
程序员小羊!
杂文语言模型人工智能自然语言处理
大家好,我是程序员小羊!前言:本地部署大语言模型(LLM,LargeLanguageModel)需要相应的硬件资源和技术栈支持,如GPU计算能力、大量内存、存储空间,以及模型部署框架。以下是如何在本地部署大语言模型的详细解释,包括选择模型、硬件需求、安装必要的软件和工具、下载和配置模型、以及优化运行性能的建议。一、前期准备1.硬件需求部署大语言模型的硬件要求主要取决于模型的大小和运行任务的复杂度。
- 验证resneXt,densenet,mobilenet和SENet的特色结构
dfj77477
人工智能python
简介图像分类对网络结构的要求,一个是精度,另一个是速度。这两个需求推动了网络结构的发展。resneXt:分组卷积,降低了网络参数个数。densenet:密集的跳连接。mobilenet:标准卷积分解成深度卷积和逐点卷积,即深度分离卷积。SENet:注意力机制。简单起见,使用了[1]的代码,注释掉layer4,作为基本框架resnet14。然后改变局部结构,验证分类效果。实验结果GPU:gtx107
- Yolo-v3利用GPU训练make时发生错误:/usr/bin/ld: cannot find -lcuda
徐小妞66666
一.利用GPU训练Yolov3时,首先要修改MakeFile文件,修改格式如下:GPU=1(原来为0)CUDNN=1(原来为0)NVCC=/usr/local/cuda/bin/nvcc(新建,注意自己本机的地址)二.此时make产生错误/usr/bin/ld:cannotfind-lcuda1.查看MakeFile文件找到该行代码:LDFLAGS+=-L/usr/local/cuda/lib64
- 【环境搭建:onnx模型部署】onnxruntime-gpu安装与测试(python)(1)
2401_83703835
程序员python深度学习pytorch
cuda==10.2cudnn==8.0.3onnxruntime-gpu==1.5.0or1.6.0pipinstallonnxruntime-gpu==1.6.0###2.2方法二:onnxruntime-gpu不依赖于本地主机上cuda和cudnn在conda环境中安装,不依赖于本地主机上已安装的cuda和cudnn版本,灵活方便。这里,先说一下已经测试通过的组合:*python3.6,cu
- linux查看jupyter运行,在Linux服务器上运行Jupyter notebook server教程
天启大烁哥
在Linux服务器上运行Jupyternotebookserver教程很多deeplearning教程都推荐在jupyternotebook运行python代码,方便及时交互。但只在本地运行没有GPU环境,虽然googlecolab是个好办法,但发现保存模型后在云端找不到模型文件,且需要合理上网才能访问。于是想给实验室的服务器配置jupyternotebook,供本机远程访问。踩了不少坑,码一下教
- ONNX Runtime、CUDA、cuDNN、TensorRT版本对应
可keke
ML&DLpytorchdeeplearning
文章目录ONNXRuntime的安装ONNXRuntime与CUDA、cuDNN的版本对应ONNXRuntime与ONNX的版本对应ONNXRuntime、TensorRT、CUDA版本对应ONNXRuntime的安装官方文档注意,到目前为止,onnxruntime-gpu在CUDA12.x和CUDA11.x下的安装命令是不同的,仔细阅读官方文档。验证安装python>>>importonnxru
- ONNXRuntime与CUDA版本对应
zy_destiny
部署YOLOonnxruntimeonnX部署cudapython
onnxruntime-gpu版本可以说是一个非常简单易用的框架,因为通常用pytorch训练的模型,在部署时,会首先转换成onnx,而onnxruntime和onnx又是有着同一个爸爸,无疑,在op的支持上肯定是最好的。通常在安装onnxruntime时,需要将其版本与pytorch版本和CUDA版本进行对应,其中ONNXRuntime与CUDA版本对应关系表如下表所示。ONNXRuntimeC
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟