自有数据集上,如何用keras最简单训练YOLOv3目标检测

qqwweee/keras-yolo3是最简单的自数据训练yolov3的开源项目了。非常简单,相比其他的开源项目,太适合新手练习yolov3。
而公开的很多开源框架的都是基于VOC/COCO来写预训练,整理数据起麻烦不少。
本来笔者看到mxnet/gluoncv有yolov3的自训练,而且Mxnet还进行一定改进把精度提升了不少,还欢欣鼓舞的去尝试,但是一旦遇到坑,基本没法解决。。社区人太少,搜不到前人的经验,报错信息稀奇古怪,定位到报错code较难,留言给社区也一时半会儿没人回,还真是从入门到放弃。。

在此之上进行一些微调,我的项目地址:keras-yolo3-improved
其中,

  • selfdata_keras_yolov3.ipynb,自己训练时候的ipynb
  • selfdata_yolov3_test.ipynb,自己预测时候的ipynb
  • yolo_matt.py,预测时候改进输出结果

文章目录

  • 1 数据准备
  • 2 训练:
  • 3 预测:


1 数据准备

最简单是因为把数据整理成以下的样子就可以开始训练:

path/to/img1.jpg 50,100,150,200,0 30,50,200,120,3
path/to/img2.jpg 120,300,250,600,2
...

也就是:地址,xmin,ymin,xmax,ymax,类别ID然后空格下一个box,每张图一行。
例子:

images/images_all/86900fb6gy1fl4822o7qmj22ao328qv7.jpg 10,259,399,580,27
images/images_all/b95fe9cbgw1eyw88vlifjj20c70hsq46.jpg 10,353,439,640,29
images/images_all/005CsCZ0jw1f1n8kcj8m1j30ku0kumz6.jpg 75,141,343,321,27

2 训练:

keras源码中有两段训练:

  • 第一段冻结前面的249层进行迁移学习(原有的yolov3)
  • 第二段解冻全部层进行训练

笔者自己的训练数据集是专业领域的图像,所以基本第一阶段的迁移学习阶段没啥用,因为与原有的yolov3训练集差异太大,如果你也是,请直接开始第二段或者重新根据darknet53训练。
那么这边就有三样可能需要预下载的模型:

  • yolo_weights.h5 预训练模型(用作迁移)
    python convert.py -w yolov3.cfg yolov3.weights model_data/yolo_weights.h5
  • darknet53.weights (用作重新训练)
    wget https://pjreddie.com/media/files/darknet53.conv.74
  • yolo.h5 (yolov3-VOC训练模型,可以直接用来做预测 )
    python convert.py yolov3.cfg yolov3.weights model_data/yolo.h5

来看看训练时候需要的参数:

    class yolo_args:
        annotation_path = 'train.txt'
        log_dir = 'logs/003/'
        classes_path = 'model_data/class_file_en.txt'
        anchors_path = 'model_data/yolo_anchors.txt'
        input_shape = (416,416) # multiple of 32, hw
        # 608*608  416*416  320*320
        val_split = 0.1
        batch_size = 16
        epochs_stage_1 = 10
        stage_1_train = False
        epochs_finally = 100
        finally_train = True
        weights_path =   'logs/003/ep009-loss33.297-val_loss32.851.h5'# 可以使用'model_data/tiny_yolo_weights.h5' 也可以使用tiny_yolo的:'model_data/yolo_weights.h5'

        
        
    # train
    _main(yolo_args)
  • annotation_path就是数据集准备的txt

  • log_dir ,Model存放地址,譬如:events.out.tfevents.1545966202ep077-loss19.318-val_loss19.682.h5

  • classes_path ,分类内容

  • anchors_path ,yolo anchors,可自行调整,也可以使用默认的

  • input_shape ,一般是416

  • epochs_stage_1 = 10stage_1_train = False,是同一个,也就是是否进行迁移学习(stage_1_train ),要学习的话,学习几个epoch(epochs_stage_1

  • epochs_finally = 100finally_train = True ,是,是否进行后面开放所有层的学习(finally_train ),学习几个epoch(epochs_finally

  • weights_path ,调用model的路径

这里需要注意:
如果要在之前训练基础上,追加训练,一般要把batch_size设置小一些,然后加载之前的权重。


3 预测:

来看一个简单的预测

import sys
import argparse
from yolo import YOLO, detect_video
from PIL import Image

yolo_test_args = {
    "model_path": 'model_data/yolo.h5',
    "anchors_path": 'model_data/yolo_anchors.txt',
    "classes_path": 'model_data/coco_classes.txt',
    "score" : 0.3,
    "iou" : 0.45,
    "model_image_size" : (416, 416),
    "gpu_num" : 1,
}


yolo_test = YOLO(**yolo_test_args)
image = Image.open('images/part1/path1.jpg')
r_image = yolo_test.detect_image(image)
r_image.show()

直接返回的是带框的图片,如果你要输出boxes,可以自己改一下detect_image函数。

此时注意以下:out_boxes, out_scores, out_classes中out_boxes,每个Boxes代表的是:y_min, x_min, y_max, x_max

自有数据集上,如何用keras最简单训练YOLOv3目标检测_第1张图片

在此之上,进行预测结果优化,可参考:yolo_matt.py:

import sys
import argparse
from yolo_matt import YOLO, detect_video
from PIL import Image

yolo_test_args = {
    "model_path": 'logs/003/ep077-loss19.318-val_loss19.682.h5',
    "anchors_path": 'model_data/yolo_anchors.txt',
    "classes_path": 'model_data/class_file_en.txt',
    "score" : 0.2,# 0.2
    "iou" : 0.1,# 0.45
    "model_image_size" : (416, 416),
    "gpu_num" : 1,
}

yolo_test = YOLO(**yolo_test_args)

# 输出内容整理
def _get_class(classes_path):
    classes_path = os.path.expanduser(classes_path)
    with open(classes_path) as f:
        class_names = f.readlines()
    class_names = [c.strip() for c in class_names]
    return class_names

def yolov3_output(image,out_boxes,out_scores,out_classes):
    output = []
    yolo_classes = _get_class(yolo_test_args['classes_path'])
    for n,box in enumerate(out_boxes):
        y_min, x_min, y_max, x_max = box
        y_min = max(0, np.floor(y_min + 0.5).astype('int32'))
        x_min = max(0, np.floor(x_min + 0.5).astype('int32'))
        y_max = min(image.size[1], np.floor(y_max + 0.5).astype('int32'))
        x_max = min(image.size[0], np.floor(x_max + 0.5).astype('int32'))
        score = out_scores[n]
        yo_class = yolo_classes[out_classes[n]]
        output.append({ 'y_min':y_min, 'x_min':x_min, 'y_max':y_max, 'x_max':x_max,\
                       'width':image.size[0],'height':image.size[1],\
                       'score':score,'yo_class':yo_class})
    return output
    
image = Image.open('images/images_all/path1.jpg')
r_image,out_boxes, out_scores, out_classes = yolo_test.detect_image(image)
output = yolov3_output(r_image,out_boxes,out_scores,out_classes)

输出结果类似:

{
'path1.jpg': 
[{'y_min': 416,   'x_min': 34,   'y_max': 754,   'x_max': 367,   'width': 440,   'height': 783,   'score': 0.9224778,   'yo_class': 'class1'},
  {'y_min': 428,   'x_min': 3,   'y_max': 783,   'x_max': 352,   'width': 440,   'height': 783,   'score': 0.2180994,   'yo_class': 'class2'}]
  }

你可能感兴趣的:(自有数据集上,如何用keras最简单训练YOLOv3目标检测)