(CF#257)B. Jzzhu and Sequences

Jzzhu has invented a kind of sequences, they meet the following property:

You are given x and y, please calculate fn modulo 1000000007 (109 + 7).

Input

The first line contains two integers x and y (|x|, |y| ≤ 109). The second line contains a single integer n (1 ≤ n ≤ 2·109).

Output

Output a single integer representing fn modulo 1000000007 (109 + 7).

Sample test(s)
input
2 3
3
output
1
input
0 -1
2
output
1000000006
Note

In the first sample, f2 = f1 + f33 = 2 + f3f3 = 1.

In the second sample, f2 =  - 1 - 1 modulo (109 + 7) equals (109 + 6).

本来9点的CF,今天有学姐来,讲到了9点半,这题最后没注意坑点,最后判的时候还wa了,掉了100分,蛋疼中


#include
#include
#include
#include
using namespace std;
const int maxn=1100;
const int M=1000000007;
int a[maxn];
int main()
{
   int x,y,n;
   while(cin>>x>>y>>n)
   {
       a[1]=x;
       a[2]=y;
       int len=0,t;
       for(int i=3;;i++)
       {
           a[i]=a[i-1]-a[i-2];
           if(a[i]==a[2]&&a[i-1]==a[1]&&i>=4)
           {
               len=i-2;
               break;
           }
           if(i>=n)
             break;
       }
       if(len)
       {
//          cout<<"len:"<0)
          cout<

看了别人的想法,我的还是太狭隘了,我只知道找规律,别人找的规律更具体。
#include
#include
#include
#include
using namespace std;
const int M=(1e9)+7;
int a[6];

int main()
{
    int x,y,n;
    while(cin>>x>>y>>n)
    {
        a[1]=(x+M)%M;
        a[2]=(y+M)%M;
        a[3]=(a[2]-a[1]+M)%M;
        a[4]=(-x+M)%M;
        a[5]=(-y+M)%M;
        a[0]=(a[1]-a[2]+M)%M;
        cout<<(a[n%6]+M)%M<


你可能感兴趣的:((CF#257)B. Jzzhu and Sequences)