题目大意:
给定一个长度为\(n\)的序列\(a\),\(k\),和\(m\)次询问。
每次询问给定区间\([l,r]\),求满足\(l\leqslant i< j\leqslant r\)且\(\_\_ \text{builtin}\_ \text{popcount} (a_i\oplus a_j)=k\)的数对\((i,j)\)的个数。
40MB。
解题思路:
二次离线莫队lxl黑科技。
对于一次询问\([l,r]\),我们考虑右端点往右移动一格后变成\([l,r+1]\),多出来的数其实是\(a_{r+1}\)在\([l,r]\)内的贡献。
而这个贡献相当于\(a_{r+1}\)在\([1,r]\)内的贡献减去\(a_{r+1}\)在\([1,l-1]\)内的贡献。
而\(a_{i+1}\)在区间\([1,i]\)内的贡献可以前缀和预处理出来,这部分贡献可以\(O(1)\)计算。
而当右指针移动的时候,左指针不会动,所以\([1,l-1]\)这个区间是不会变的。
设指针\(r\)往右移动到\(r'\),则把\([r+1,r']\)塞进\(v_{l-1}\)里去,表示\([1,l-1]\)这段区间对\([r+1,r']\)有贡献。往左移动同理,记录一下贡献的正负即可。
左指针移动的话,则反着再记录一个即可。注意右指针移动的时候,左指针没有动过,而左指针移动的时候,右指针已经移动完了。
而莫队保证每个指针移动的总距离是\(O(n\sqrt n)\)的,也就是说一个vector里存的区间总长是\(O(n\sqrt n)\)的,那么拿出来暴力计算即可。
要用一个桶记录当前状态,可以做到\(O(\binom{14}{k})\)插入(插入一个数,把这个数异或所有合法数的桶都+1),\(O(1)\)查询。
注意最后得到的结果是与上一次的贡献差,最后要做一个前缀和。
时间复杂度\(O(n\binom{14}{k}+n\sqrt n)\),常数巨大。空间复杂度\(O(n+m)\)。
C++ Code:
#include
#include
#include
#include
#include
#define lim 16384
#define N 100005
#define reg register
class istream{
char buf[15000003],*s;
public:
inline istream(){
buf[fread(s=buf,1,15000001,stdin)]='\n';
}
template
inline istream&operator>>(T&rhs){
for(rhs=0;!isdigit(*s);++s);
while(isdigit(*s))rhs=rhs*10+(*s++&15);
return*this;
}
}cin;
struct ostream{
char buf[8000005],*s;
inline ostream(){s=buf;}
inline void operator<<(long long d){
if(!d){
*s++='0';
}else{
static long long w;
for(w=1;w<=d;w*=10);
for(;w/=10;d%=w)*s++=d/w^'0';
}
*s++='\n';
}
inline ostream&operator<<(const char&c){*s++=c;return*this;}
inline~ostream(){fwrite(buf,1,s-buf,stdout);}
}cout;
int n,m,k,buc[lim+1],a[N],K[4000],KS;
long long ans[N],out[N],L_R[N],R_L[N];
struct que{
int l,r,id;
inline bool operator<(const que&rhs)const{
return((l/333!=rhs.l/333)?(lL[N],R[N];
int main(){
cin>>n>>m>>k;
if(k>14){for(int i=1;i<=m;++i)puts("0");return 0;}
for(int i=0;i>a[i];
L_R[i]=buc[a[i]]+L_R[i-1];
reg int j=0;
for(;j+8>q[i].l>>q[q[i].id=i].r;
std::sort(q+1,q+m+1);
q[0].l=1,q[0].r=0;
for(int i=1;i<=m;++i){
const que&now=q[i],pre=q[i-1];
ans[i]+=L_R[now.r]-L_R[pre.r]+R_L[now.l]-R_L[pre.l];
if(now.r>pre.r)
R[pre.l-1].push_back((node){pre.r+1,now.r,i,-1});else
if(now.rpre.l)
L[now.r+1].push_back((node){pre.l,now.l-1,i,1});
}
memset(buc,0,sizeof buc);
for(int i=1;i<=n;++i){
reg int j=0;
for(;j+8