- 基于matlab的深度学习案例及基础知识专栏前言
逼子歌
matlab深度学习信号处理神经网络矩阵运算CNN
专栏简介内容涵盖深度学习基础知识、深度学习典型案例、深度学习工程文件、信号处理等相关内容,博客由基于matlab的深度学习案例、matlab基础知识、matlab图像基础知识和matlab信号处理基础知识四部分组成。一、基于matlab的深度学习案例1.1、matlab:基于模板匹配的车牌识别_阐述基于模板匹配的车牌识别的字符识别-CSDN博客1.2、基于卷积神经网络(CNN)的车牌自动识别系统(
- 深度学习入门资料整理
AI视觉网奇
应该看的算法深度学习基础深度学习入门
深度学习基础总结,无一句废话(附完整思维导图)深度学习如何入门?-知乎深度学习入门基础讲义_shuzfan的博客-CSDN博客_深度学习入门神经网络15分钟入门!足够通俗易懂了吧-知乎深度学习基础知识点梳理-知乎
- 深度学习知识学习笔记
wyn20001128
图像处理深度学习算法
一相关的深度学习基础知识(1)线性回归 设房屋的⾯积为x1x_1x1,房龄为x2x_2x2,售出价格为yyy。我们需要建⽴基于输⼊x1x_1x1和x2x_2x2来计算输出的表达式,yyy也就是模型(model)。顾名思义,线性回归假设输出与各个输⼊之间是线性关系:y=w1x1+w2x2+by=w_1x_1+w_2x_2+by=w1x1+w2x2+b 在模型训练中,我们需要衡量价格预测值与真实值
- 深度学习基础知识
湘溶溶
深度学习分割深度学习人工智能
卷积神经网络——图像卷积特征提取卷积核(算子)用来做图像处理时的矩阵,与原图像做运算的参数。卷积层基本参数(卷积核大小,步长【pytorch默认为1】,padding边缘填充)输出尺寸=(输入尺寸-卷积核尺寸+2*padding)/stride+1卷积神经网络的基本结构层输入层:批次通道图像大小卷积层激活函数:加入非线性因素,提高神经网络对模型的表达能力,解决线性模型所不能解决的问题,CNN较为常
- 深度学习基础知识整理
Do1phln
ML深度学习人工智能
自动编码器Auto-encoders是一种人工神经网络,用于学习未标记数据的有效编码。它由两个部分组成:编码器和解码器。编码器将输入数据转换为一种更紧凑的表示形式,而解码器则将该表示形式转换回原始数据。这种方法可以用于降维,去噪,特征提取和生成模型。自编码器的训练过程是无监督的,因为它不需要标记数据。它的目标是最小化重构误差,即输入数据与解码器输出之间的差异。这可以通过反向传播算法和梯度下降等优化
- 深度学习入门
AI-智能
深度学习人工智能机器学习
概述此学习路径专为有兴趣熟悉和探索深度学习主题的任何人而设计。目前,该学习路径涵盖了深度学习的基础知识,但将来将得到增强,以涵盖有监督和无监督的深度学习概念。深度学习基础知识了解深度学习与机器学习的关系,探索其基础知识,并了解在某些应用中使用深度学习算法的优势。技能水平初学者估计完成时间约2小时。学习目标通过此学习路径,你将获得:对深度学习概念的理解对深度学习架构的理解深度学习框架的比较如何在Te
- 02-深度学习基础知识
洛八斗
在TensorFlow中,tensor是一个类,也是存储和变换数据的主要工具。如果你之前用过NumPy,你会发现tensor和NumPy的多维数组非常类似。然而,tensor提供GPU计算和自动求梯度等更多功能,这些使tensor更加适合深度学习。1TensorFlow基本功能首先用arange创建一个行向量创建一个行向量.png关于constan函数在TensorFlow中表示张量。consta
- 深度学习基础知识神经网络
小森( ﹡ˆoˆ﹡ )
深度学习神经网络人工智能
神经网络1.感知机感知机(Perceptron)是FrankRosenblatt在1957年提出的概念,其结构与MP模型类似,一般被视为最简单的人工神经网络,也作为二元线性分类器被广泛使用。通常情况下指单层的人工神经网络,以区别于多层感知机(MultilayerPerceptron)。尽管感知机结构简单,但能够学习并解决较复杂问题感知机结构与MP模型类似,一般被视为最简单的人工神经网络,也作为二元
- OpenCV完结篇——计算机视觉(人脸识别 || 车牌识别)
源代码•宸
OpenCV计算机视觉opencv人工智能算法经验分享
文章目录Haar人脸识别方法Haar识别眼鼻口Haar+Tesseract进行车牌识别深度学习基础知识dnn实现图像分类Haar人脸识别方法scaleFactor调整哈尔级联器的人脸选框使其能框住人脸官方教程指路每个特征都是通过从黑色矩形下的像素总和减去白色矩形下的像素总和获得的单个值级联器模型文件位置#-*-coding:utf-8-*-importcv2importnumpyasnpcv2.n
- 深度学习基础知识——从人工神经网络开始
无水先生
深度学习机器学习人工智能深度学习人工智能
一、介绍您知道第一个神经网络是在20世纪50年代初发现的吗?深度学习(DL)和神经网络(NN)目前正在推动本世纪一些最巧妙的发明。他们从数据和环境中学习的令人难以置信的能力使他们成为机器学习科学家的首选。深度学习和神经网络是自动驾驶汽车、图像识别软件、推荐系统等产品的核心。显然,它是一种强大的算法,对各种数据类型也具有高度适应性。人们认为神经网络是一个极其难学的课题。因此,要么他们中的一些人不使用
- 基于昇腾CANN的推理应用开发快速体验(Python)
Tianyi Li 1997
pythoncaffe深度学习华为
0.前情提要这是关于一次Ascend在线实验的记录,主要内容是通过网络模型加载、推理、结果输出的部署全流程展示,从而快速熟悉并掌握ACL(AscendComputingLanguage)基本开发流程。注意,为了保证学习和体验效果,用户应该具有以下知识储备:1.熟练的Python语言编程能力2.深度学习基础知识,理解神经网络模型输入输出数据结构1.目录2.最终目标1.了解ACL的基本概念,清楚ACL
- BERT课程
baidu_huihui
BERT课程AIBERT课程
本文是作者即将在CSDN作直播的课程的预备知识,对课程感兴趣但是没有相关背景知识的同学可以提前学习这些内容。新增课程slides和视频回放地址。目录课程视频和slides背景知识深度学习基础知识WordEmbedding语言模型RNN/LSTM/GRU、Seq2Seq和Attention机制Tensorflow基础知识PyTorch基础知识BERT课程视频和slides回放视频地址是这里。课程的s
- 如何学习训练大模型——100条建议
嗯,这是一个好名字
学习
学习训练大模型需要深度学习知识、计算资源、实践经验和一定的方法。以下是学习训练大模型的一般步骤:基础知识:学习深度学习基础知识,包括神经网络结构、损失函数、优化算法等。可以通过在线课程、教科书和教程来学习。编程技能:熟悉深度学习框架(如TensorFlow、PyTorch等)和编程语言(如Python)。掌握数据处理、模型构建和训练的编程技能是关键。数据准备:收集、清理和准备数据集,确保数据的质量
- 如何在深度学习领域取得个人的成功
xw555666
深度学习人工智能
要在深度学习领域取得个人的成功,可以考虑以下建议:学习深度学习的基础知识:首先,建立坚实的深度学习基础知识是非常重要的。你可以学习深度学习的基本概念、神经网络的原理、常用的深度学习框架(如TensorFlow、PyTorch)和数学知识,如线性代数、微积分和概率统计。进行实践项目:深度学习最好通过实际项目来学习。选择一个感兴趣的领域,例如计算机视觉、自然语言处理或增强学习,然后开始构建和训练深度学
- 深度学习推荐系统架构、Sparrow RecSys项目及深度学习基础知识
我是廖志伟
#博主活动深度学习系统架构人工智能
文章目录技术架构:深度学习推荐系统的经典技术架构长啥样?一、深度学习推荐系统的技术架构二、基于用户行为的推荐三、基于多模态数据的推荐四、基于知识图谱的推荐SparrowRecSys:我们要实现什么样的推荐系统?一、SparrowRecSys项目简介二、SparrowRecSys项目的技术架构三、SparrowRecSys项目的价值和意义深度学习基础:你打牢深度学习知识的地基了吗?一、深度学习的基本
- 如何学习深度学习
我是廖志伟
#博主活动学习深度学习人工智能
文章目录如何学习深度学习基础数学知识编程基础知识深度学习基础知识学习资源总结我是廖志伟,一名Java开发工程师、Java领域优质创作者、CSDN博客专家、51CTO专家博主、阿里云专家博主、清华大学出版社签约作者、产品软文创造者、技术文章评审老师、问卷调查设计师、个人社区创始人、开源项目贡献者。跑过十五公里、徒步爬过衡山、有过三个月减肥20斤的经历、是个喜欢躺平的狠人。拥有多年一线研发和团队管理经
- 【深度学习基础知识(一):卷积神经网络CNN基础知识】
CL_Meng77
基础知识深度学习cnn人工智能神经网络机器学习计算机视觉
@深度学习基础知识深度学习基础知识(一):卷积神经网络CNN基础知识卷积神经网络CNN基础知识0、目录1.CNN卷积神经网络的特点2.卷积操作基础知识2.1卷积操作的概念2.2卷积操作的种类2.3卷积操作后特征图谱大小计算公式3.池化操作基础知识3.1池化操作的作用/为什么要进行池化操作?3.2池化操作的种类3.3池化操作后特征图谱大小计算公式1、CNN卷积神经网络的特点CNN的使用范围是具有局部
- 深度学习基础知识 Dataset 与 DataLoade的用法解析
郭庆汝
深度学习人工智能
深度学习基础知识Dataset与DataLoade的用法解析1、Dataset2、DataLoader参数设置:1、pin_memory2、num_workers3、collate_fn分类任务目标检测任务1、Dataset代码:importtorchfromtorch.utilsimportdataclassMyDataset(torch.utils.data.Dataset):def__ini
- 深度学习基础知识数据 数据预处理transforms流程讲解
郭庆汝
深度学习人工智能
深度学习基础知识数据数据预处理transforms流程讲解1、数据预处理2、使用节点2、transform.RandomResizedCrop随机尺寸裁剪缩放3、水平翻转与垂直翻转4、ColorJitter变换5、ToTensor6、Normalization归一化7、transforms.Compose8、重写transforms1、分类任务2、目标检测任务3、分割任务数据增强可以增加训练集的样
- 深度学习基础知识 给模型的不同层 设置不同学习率
郭庆汝
深度学习学习人工智能
深度学习基础知识给模型的不同层设置不同学习率1、使用预训练模型时,可能需要将2、学习率设置方式:1、使用预训练模型时,可能需要将(1)预训练好的backbone的参数学习率设置为较小值,(2)backbone之外的部分(新增的部分,一般为分类头、检测头,等),需要使用较大的学习率。2、学习率设置方式:在定义优化器的时候,用list将参数设置为不同的组,每个组(list中的每个元素)用字典表示,在字
- 深度学习基础知识 最近邻插值法、双线性插值法、双三次插值算法
郭庆汝
深度学习算法人工智能
深度学习基础知识最近邻插值法、双线性插值法、双三次插值算法1、最近邻插值法1、最近邻插值法*最邻近插值:将每个目标像素找到距离它最近的原图像素点,然后将该像素的值直接赋值给目标像素优点:实现简单,计算速度快缺点:插值结果缺乏连续性,可能会产生锯齿状的边缘,对于图像质量影响较大,因此当处理精度要求较高的图像时,通常会采用更加精细的插值算法,例如:双线性插值、三次插值。代码示例:importnumpy
- 深度学习基础知识总结
ThreeS_tones
深度学习神经网络
目录背景深度学习/机器学习/人工智能,计算机视觉/机器视觉/图像处理...的关系监督学习、无监督学习、半监督学习图像分类、目标检测、语义分割、实例分割基础知识激活函数激活函数的作用激活函数一般是非线性的常见的激活函数训练集/验证集/测试集,交叉验证...训练集验证集(开发集)测试集交叉验证目标检测YOLO算法YOLO算法发展过程卷积空洞卷积感受野过拟合噪声IOU搭建模型相关Dropout方法展平P
- 深度学习基础知识 register_buffer 与 register_parameter用法分析
郭庆汝
深度学习人工智能register_buffer
深度学习基础知识register_buffer与register_parameter用法分析1、问题引入2、register_parameter()2.1作用2.2用法3、register_buffer()3.1作用3.2用法1、问题引入思考问题:定义的weight与bias是否会被保存到网络的参数中,可否在优化器的作用下进行学习验证方案:定义网络模型,设置weigut与bias,遍历网络结构参数
- 深度学习基础知识 BatchNorm、LayerNorm、GroupNorm的用法解析
郭庆汝
深度学习batch人工智能
深度学习基础知识BatchNorm、LayerNorm、GroupNorm的用法解析1、BatchNorm2、LayerNorm3、GroupNorm用法:BatchNorm、LayerNorm和GroupNorm都是深度学习中常用的归一化方式。它们通过将输入归一化到均值为0和方差为1的分布中,来防止梯度消失和爆炸,并提高模型的泛化能力1、BatchNormimportnumpyasnpimpor
- 深度学习基础知识 学习率调度器的用法解析
郭庆汝
深度学习学习人工智能
深度学习基础知识学习率调度器的用法解析1、自定义学习率调度器**:**torch.optim.lr_scheduler.LambdaLR2、正儿八经的模型搭建流程以及学习率调度器的使用设置1、自定义学习率调度器**:**torch.optim.lr_scheduler.LambdaLR实验代码:importtorchimporttorch.nnasnndeflr_lambda(x):returnx
- 深度学习基础知识 使用torchsummary、netron、tensorboardX查看模参数结构
郭庆汝
深度学习人工智能torchsummarynetrontensorboardX
深度学习基础知识使用torchsummary、netron、tensorboardX查看模参数结构1、直接打印网络参数结构2、采用torchsummary检测、查看模型参数结构3、采用netron检测、查看模型参数结构3、使用tensorboardX1、直接打印网络参数结构importtorch.nnasnnfromtorchsummaryimportsummaryimporttorchclass
- 深度学习基础知识 nn.Sequential | nn.ModuleList | nn.ModuleDict
郭庆汝
深度学习人工智能nn.Sequentialnn.ModuleListnn.ModuleDict
深度学习基础知识nn.Sequential|nn.ModuleList|nn.ModuleDict1、nn.Sequential、nn.ModuleList、nn.ModuleDict类都继承自Module类。2、nn.Sequential、nn.ModuleList和nn.ModuleDict语法3、Sequential、ModuleDict、ModuleList的区别4、ModuleDict、
- 【深度学习概述学习小结】
文海傲舟
人工智能python深度学习
深度学习概述学习小结人工智能、机器学习与深度学习关系深度学习深度学习历史深度学习基础知识神经元参数更新与误差反向传播Pytorch代码学习螺旋分类整体思考实验对比继续实验人工智能、机器学习与深度学习关系在人工智能领域,对于人们而言十分复杂而庞大的问题对机器来说也许并不难,因为这些问题可以通过一系列正式的数学表达式来描述,真正困难的问题是那些对于人类来说十分直觉、也许我们将其视为本能的一些问题,例如
- 深度学习基础知识(三)-线性代数的实现
渣渣洒泪成长记
PythonAi与大数据深度学习线性代数人工智能
1.标量使用标量由只有一个元素的张量表示,标量可以做最简单的计算。importtorchx=torch.tensor([3.0])y=torch.tensor([2.0])print(x+y)print(x*y)print(x/y)print(x**y)结果:tensor([5.])tensor([6.])tensor([1.5000])tensor([9.])2.向量使用向量:将标量值组成的列表
- 深度学习基础知识-pytorch数据基本操作
渣渣洒泪成长记
Ai与大数据Python深度学习笔记人工智能
1.深度学习基础知识1.1数据操作1.1.1数据结构机器学习和神经网络的主要数据结构,例如0维:叫标量,代表一个类别,如1.01维:代表一个特征向量。如[1.0,2,7,3.4]2维:就是矩阵,一个样本-特征矩阵,如:[[1.0,2,7,3.4][2.0,3,7,4.4]],每一行是样本,每一列是特征;3维:RGB图片(宽(列)x高(行)x通道)三维数组,[[[1.0,2,7,3.4][2.0,3
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1