HDU 6808 Go Running (二分图最大匹配)

题意:无限长的轴,上面有人跑步,起跑时间和位置未知。给出n个报告,每次报告某时刻某点至少有一个人,求最少有几人在跑步。

题解:二分图最大匹配
线性关系不难发现,假设报告时刻为 t t t,位置为 x x x,那么相同的 t + x t+x t+x或者 t − x t-x tx能够合并成一个人。但妹想到用二分图做。

比如第一个样例,将 t t t x x x投影到坐标系中,其实就是求最少用多少条斜线(左或右)能将所有点包括。
HDU 6808 Go Running (二分图最大匹配)_第1张图片
那么我们用map记录序号,将 t + x t+x t+x(右斜线)和 t − x t-x tx(左斜线)相连,再用HK算法求一下最大匹配就好了。

#define _CRT_SECURE_NO_WARNINGS
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define ll long long
using namespace std;
const int maxn = 5e5 + 10;
const int INF = 0x3f3f3f3f;
vector<int> G[maxn];
int uN;  //左端顶点数 记得赋值
int Mx[maxn], My[maxn];
int dx[maxn], dy[maxn];
int dis;
bool used[maxn];
bool SearchP() {
	queue<int>Q;
	dis = INF;
	memset(dx, -1, sizeof(dx));
	memset(dy, -1, sizeof(dy));
	for (int i = 1; i <= uN; i++)
		if (Mx[i] == -1) {
			Q.push(i);
			dx[i] = 0;
		}
	while (!Q.empty()) {
		int u = Q.front();
		Q.pop();
		if (dx[u] > dis)break;
		int sz = G[u].size();
		for (int i = 0; i < sz; i++) {
			int v = G[u][i];
			if (dy[v] == -1) {
				dy[v] = dx[u] + 1;
				if (My[v] == -1)dis = dy[v];
				else {
					dx[My[v]] = dy[v] + 1;
					Q.push(My[v]);
				}
			}
		}
	}
	return dis != INF;
}
bool DFS(int u) {
	int sz = G[u].size();
	for (int i = 0; i < sz; i++) {
		int v = G[u][i];
		if (!used[v] && dy[v] == dx[u] + 1) {
			used[v] = true;
			if (My[v] != -1 && dy[v] == dis)continue;
			if (My[v] == -1 || DFS(My[v])) {
				My[v] = u;
				Mx[u] = v;
				return true;
			}
		}
	}
	return false;
}
int MaxMatch() {
	int res = 0;
	memset(Mx, -1, sizeof(Mx));
	memset(My, -1, sizeof(My));
	while (SearchP()) {
		memset(used, false, sizeof(used));
		for (int i = 1; i <= uN; i++)
			if (Mx[i] == -1 && DFS(i))
				res++;
	}
	return res;
}
map<int, int> m1, m2;
int t, n, tt, xx;
int main() {
	//freopen("G.in", "r", stdin);
	scanf("%d", &t);
	while (t--) {
		memset(G, 0, sizeof(G));
		m1.clear();
		m2.clear();
		scanf("%d", &n);
		int u = 0, v = 0;
		for (int i = 1; i <= n; i++) {
			scanf("%d%d", &tt, &xx);
			int x = tt + xx;
			int y = tt - xx;
			if (!m1[x]) m1[x] = ++u;
			if (!m2[y]) m2[y] = ++v;
			G[m1[x]].push_back(m2[y]);
		}
		uN = u;
		printf("%d\n", MaxMatch());
	}
	return 0;
}

你可能感兴趣的:(#,二分图匹配,二分图匹配)