离散对数学习:baby_step_giant_step与ex_baby_step_giant_step算法


对于问题 b ^ x == N % mod 的问题,知道b,N,mod,求最小指数 x;

1.对于mod为素数的时候用朴素baby_step_giant_step算法,算法过程如下:

思路: 令x = i * m + j,m为ceil(sqrt(double(mod)));

那么的话等式为 b ^ j == N * b ^ ( - m * i) % mod,要求x,那么就是把满足这个方程的 i , j 求出来,i,j的范围为m = ceil(sqrt(double(mod))),在范围内对左边的打哈希表,这是baby_step操作;然后对右边进行i递增,使得b是以-m的指数进行递增,所以要先求出b%mod的逆元,可以得出(b ^(-m));进行操作的时候如果满足这个等式的话直接说明i,j找到了,然后 x = i * m + j;

复杂度为mlogm

poj2417 

题意:mod为素数,对于问题 b ^ x == N % mod 的问题,知道b,N,mod,求最小指数 x;

思路: mod为素数的话求b的逆元可以用快速幂pow_mod(b,mod - 2,mod),后者用拓展欧几里得;其他一致

用hash表进行求解是标准的解法:

#include
#include
#include
#include
using namespace std;
const int maxn = 100000 + 10;
#define clr(x,y) memset(x,y,sizeof(x))
typedef long long ll;
//欧几里得 
ll gcd(ll x,ll y)
{
	return y ? gcd(y,x % y) : x;
}
//扩展欧几里得 
void ex_gcd(ll a,ll b,ll & d,ll & x,ll & y)
{
	if(b == 0)
	{
		d = a;	 x = 1;y = 0;
		return ;
	}
	ex_gcd(b,a % b,d,y,x);
	y -= a / b * x;
}
//快速幂取模 
ll pow_mod(ll x,ll n,ll mod_val)
{
	ll ans = 1;
	ll t = x % mod_val;
	while(n)
	{
		if(n & 1)
		{
			ans = ans * t % mod_val;
		}
		n >>= 1;
		t = t * t % mod_val;
	}
	return ans;
}
//逆元 
ll Inv(ll a, ll mod_val)
{
	ll x,y,d;
	ex_gcd(a,mod_val,d,x,y);
	return d == 1 ? (x % mod_val + mod_val) % mod_val : -1;
}
//大数相乘取模 
ll Mul(ll a,ll b,ll mod_val)
{
	a %= mod_val;
	b %= mod_val;
	ll ans = 0;
	ll t = a;
	while(b)
	{
		if(b & 1)
		{
			ans = (ans + t) % mod_val;
		}
		b >>= 1;
		t <<= 1;
	}
	return ans;
}
//哈希表
const ll hash_mod = 9876543;
ll key[hash_mod],val[hash_mod];
int head[hash_mod],next[hash_mod];
struct Hash
{
	int tot;
	void Init()
	{
		memset(head,-1,sizeof(head));
		tot = 0;
	}	
	void inserts(ll x,ll y)
	{
		ll k = x % hash_mod;
		key[tot] = x;
		val[tot] = y;
		next[tot] = head[k];
		head[k] = tot ++;
	}
	ll finds(ll x)
	{
		ll k = x % hash_mod;
		for(ll i = head[k]; i != -1; i = next[i])
		{
			if(key[i] == x)
			{
				return val[i];
			}
		}
		return -1;
	}
}hs; 
//求解a^x = b %(mod)已知其他三个,求x; 
ll baby_giant(ll a,ll b,ll mod_val)
{
	hs.Init();
	ll m = ceil(sqrt((double)mod_val));
	ll cur = 1;
	//baby
	for(ll j = 0; j < m; j ++)
	{
		if(hs.finds(cur) == -1)
		{
			hs.inserts(cur,j);
		}
		cur = cur * a % mod_val;
	}
	//a^-m %mod_val,这是mod_val为素数的时候的求法 
	ll _Am = pow_mod(pow_mod(a,mod_val - 2,mod_val),m,mod_val);
	cur = 1;
	//giant
	for(int i = 0; i < m; i ++)
	{
		ll j = hs.finds(cur * b % mod_val);
		if(j != -1)
		{
			return i *m + j; 
		}
		cur = cur * _Am % mod_val;
	}
	return -1;
}
//求解a ^x = b %mod ,已知其他三个,求a; 
ll a,mod,b;
int main()
{
	int T = 1; 
	while( ~ scanf("%I64d%I64d%I64d",&mod,&a,&b))
	{
//		cout << "case"<

下面是用其他的一些方法进行求解的:

map记录位置时间长一些:

#include
#include
#include
#include
#include
#include
#include
using namespace std;
#define clr(x,y) memset(x,y,sizeof x) 
const int maxn = 1000000 + 10;
const double eps = 10e-10;
const int mod = 10e6 + 10; 
typedef long long ll;
void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y)
{
	if(b == 0)
	{
		d = a; x = 1;y = 0;
		return ;
	}
	ex_gcd(b,a % b,d,y,x);
	y -= a/b * x;
}
ll pow_mod(ll x,ll y,ll mod_val)
{
	ll ans = 1;
	ll t = x % mod_val;
	while(y)
	{
		if(y & 1)
		{
			ans = ans * t % mod_val;
		}
		y >>= 1;
		t = (t * t) % mod_val;
	}
	return ans;
}
ll inv(ll a,ll mod_val)
{
	ll x,y,d;
	ex_gcd(a,mod_val,d,x,y);
	//x 的通解为c * x + b * k;
	return d == 1 ? (x % mod_val + mod_val) % mod_val : -1;
}
ll baby_gaint(ll b,ll n,ll p)
{
	ll m = (ll)ceil(sqrt((double)p));
	ll ans = 1;
	//baby_step
	mapms;//哈希表 
	for(ll j = 0; j < m; j++)
	{
		if(!ms[ans])
		ms[ans] = j + 1;
		ans = ans * b % p;
	}
	//求逆元:当mod为素数的时候,a % mod 的逆元为pow_mod(a,mod - 2,mod),后者用ex_gcd求; 
	ll invs = pow_mod(b,p - 2,p) // 或者inv(b,p);
	// b^(-m) %mod
	ll _bm = pow_mod(invs,m,p);
	//gaint_step
	ans = 1;
	//大步走m,然后找到与之相等的baby对应的j值 
	for(ll i = 0; i < m; i ++)
	{
		if(ms[ans * n % p])//j = ms[ans * n % p]
		{
			return i * m + ms[ans * n % p] 	- 1;
		}
		ans = ans * _bm %p;
	}
	return -1;
}
ll b,n,p;
int main()
{
	while( ~ scanf("%I64d%I64d%I64d",&p,&b,&n))
	{
		ll ans = baby_gaint(b,n,p);
		if(ans == -1)
		{
			puts("no solution");
			continue;
		}
		printf("%I64d\n",ans);
	}
	return 0;
}

用数组记录二分的话实践短很多:

PS:写二分的时候记得找到值不能立即返回,记录下来,可能还有更小的j,

PS: 不知用map建的表会超时,结果用数组记录,二分查找,时间节省了这么多,实践证明不要用map去记录下标,那要很费时间,还是用数组吧;


#include
#include
#include
#include
#include
#include
using namespace std;
#define clr(x,y) memset(x,y,sizeof x) 
const int maxn = 1000000 + 10;
const double eps = 10e-10;
const int mod = 10e6 + 10; 
typedef long long ll;


ll prime[maxn];
struct Baby
{
	ll b,j;
}baby[maxn];

bool cmp(const Baby &x,const Baby & y)
{
	return x.b != y.b ? (x.b < y.b) : (x.j < y.j);
}
ll get_prime(ll x)
{
	ll cnt = 0;
	for(ll i = 2; i<= x; i ++)
	{
		if(x % i == 0)
		{
			prime[cnt ++] = i;
			while(x % i == 0)
			x /= i;
		}
	}
	if(x > 1)
	prime[cnt ++] = x;
	return cnt;
}
void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y)
{
	if(b == 0)
	{
		d = a; x = 1;y = 0;
		return ;
	}
	ex_gcd(b,a % b,d,y,x);
	y -= x * a/b;
	
}
ll pow_mod(ll x,ll y,ll mod_val)
{
	ll ans = 1;
	ll t = x % mod_val;
	while(y)
	{
		if(y & 1)
		{
			ans = ans * t % mod_val;
		}
		y >>= 1;
		t = (t * t) % mod_val;
	}
	return ans;
}
ll inv(ll a,ll mod_val)
{
	ll x,y,d;
	ex_gcd(a,mod_val,d,x,y);
	return d == 1 ? (x % mod_val + mod_val) % mod_val : -1;
}
ll finds(ll x,ll m)
{
	ll l = 0,r = m- 1;
	ll ans = -1;
	while(r >= l)
	{
		ll mid = (l + r) / 2;
		
		if(baby[mid].b > x)
		{
			if(baby[mid].b == x)//保证找到的j是最小的 
				ans = baby[mid].j;
			r = mid - 1;
		}
		else
		{
			l = mid + 1;
		}
	}
	return ans;
}
ll baby_gaint(ll b,ll n,ll p)
{
	ll m = (ll)ceil(sqrt((double)(p -1)));
//	cout << m << endl;
	ll ans = 1;
	//baby_step
	for(ll j = 0; j < m; j++)
	{
		baby[j].j = j;
		baby[j].b = ans;
		ans = ans * b % p;
	}
	sort(baby,baby+m,cmp);

	//求逆元:当mod为素数的时候,a % mod 的逆元为pow_mod(a,mod - 2,mod),后者用ex_gcd求; 
	ll invs = pow_mod(b,p - 2,p);
	// b^(-m) %mod
	ll _bm = pow_mod(invs,m,p);
//	cout << _bm << endl;
	//gaint_step
	ans = 1;
	//大步走m,然后找到与之相等的baby对应的j值 
	for(ll i = 0; i < m; i ++)
	{
		ll j = finds(n * ans % p,m);
		if(j != -1)
		{
//			cout <




2.当mod不为素数的时候,用ex_baby_step_gaint_step算法;

算法过程如下:

扩展小步大步攻击:A ^ x = B (mod C)

1 :  i = 0-> 100 if A^i mod C == B return i;///做这一步是第四步有一个n

2 :  消因子, 将A^x = B mod C 划为 d * A ^ (x – n) = B (modC)

3 : m = ceil (sqrt(C))

4 : 将 A ^ (x - n) 化为  A ^ (I * m + j)(原x 化为了 n + I * m + j)这里与小步大步攻击不同

5 : for j = 0 ->m   hash(j,A ^ j mod  C)

6 : for i = 0 ->m   AA = B/(d * A ^ m ^i)

7 :在hash表中查找AA,若有,取AA对应的j,则答案为I * m + j + n

这里令x - n = i * m + j,则  A ^j = B * A ^(-i * m) * d ^(-1) % C;求解过程就跟朴素的那个baby_step_gaint_step一样了;



poj3243

hash:

#include
#include
#include
#include
using namespace std;
const int maxn = 100000 + 10;
#define clr(x,y) memset(x,y,sizeof(x))
typedef long long ll;
//欧几里得
ll gcd(ll x,ll y)
{
	return y ? gcd(y,x % y) : x;
}
//扩展欧几里得
void ex_gcd(ll a,ll b,ll & d,ll & x,ll & y)
{
	if(b == 0)
	{
		d = a;	 x = 1;y = 0;
		return ;
	}
	ex_gcd(b,a % b,d,y,x);
	y -= a / b * x;
}
//快速幂取模
ll pow_mod(ll x,ll n,ll mod_val)
{
	ll ans = 1;
	ll t = x % mod_val;
	while(n)
	{
		if(n & 1)
		{
			ans = ans * t % mod_val;
		}
		n >>= 1;
		t = t * t % mod_val;
	}
	return ans;
}
//逆元
ll Inv(ll a, ll mod_val)
{
	ll x,y,d;
	ex_gcd(a,mod_val,d,x,y);
	return d == 1 ? (x % mod_val + mod_val) % mod_val : -1;
}
//大数相乘取模
ll Mul(ll a,ll b,ll mod_val)
{
	a %= mod_val;
	b %= mod_val;
	ll ans = 0;
	ll t = a;
	while(b)
	{
		if(b & 1)
		{
			ans = (ans + t) % mod_val;
		}
		b >>= 1;
		t <<= 1;
	}
	return ans;
}
//哈希表
const ll hash_mod = 9876543;
ll key[hash_mod],val[hash_mod];
int head[hash_mod],nexts[hash_mod];
struct hash
{
	int tot;
	void Init()
	{
		memset(head,-1,sizeof(head));
		tot = 0;
	}
	void inserts(ll x,ll y)
	{
		ll k = x % hash_mod;
		key[tot] = x;
		val[tot] = y;
		nexts[tot] = head[k];
		head[k] = tot ++;
	}
	ll finds(ll x)
	{
		ll k = x % hash_mod;
		for(ll i = head[k]; i != -1; i = nexts[i])
		{
			if(key[i] == x)
			{
				return val[i];
			}
		}
		return -1;
	}
}hs;
//求解a^x = b %(mod)已知其他三个,求x;
ll baby_giant(ll a,ll b,ll mod_val)
{
	hs.Init();
	ll m = ceil(sqrt((double)mod_val));
	ll cur = 1;
	//baby
	for(ll j = 0; j < m; j ++)
	{
		if(hs.finds(cur) == -1)
		{
			hs.inserts(cur,j);
		}
		cur = cur * a % mod_val;
	}
	//a^-m %mod_val,这是mod_val为素数的时候的求法
	ll _Am = pow_mod(pow_mod(a,mod_val - 2,mod_val),m,mod_val);
	cur = 1;
	//giant
	for(int i = 0; i < m; i ++)
	{
		ll j = hs.finds(cur * b % mod_val);
		if(j != -1)
		{
			return i *m + j;
		}
		cur = cur * _Am % mod_val;
	}
	return -1;
}
ll ex_baby_giant(ll a,ll b, ll mod_val)
{
	hs.Init();
	for(ll i = 1; i <= 100; i ++)
	{
		if(pow_mod(a,i,mod_val) == b % mod_val)
		return i;
	}
	ll g,d = 1,n = 0;
	while((g = gcd(a,mod_val)) != 1)
	{
		if(b % g)
		return -1;
		b /=g;
		mod_val /= g;
		n ++;
		d = d * (a / g) % mod_val;
	}
	ll m = ceil(sqrt(double(mod_val)));
	//baby
	ll cur = 1;
	for(ll j = 0; j < m; j ++)
	{
		if(hs.finds(cur) == -1)
		{
			hs.inserts(cur,j);
		}
		cur = cur * a % mod_val;
	}
	//d^-1
	ll _d = Inv(d,mod_val);
	//d ^ -m
	ll _bm = pow_mod(Inv(a,mod_val),m,mod_val);
	cur = 1;
	//giant
	for(ll i = 0; i < m; i ++)
	{
		ll j = hs.finds(cur * _d % mod_val * b % mod_val);
		if(j != -1)
		{
			return i * m + j + n;
		}
		cur = cur * _bm % mod_val;
	}
	return -1;
}
//求解a ^x = b %mod ,已知其他三个,求a;
ll a,mod,b;
int main()
{
	int T = 1;
	while( ~ scanf("%I64d%I64d%I64d",&a,&mod,&b))
	{
		if(!a && !b && !mod)
		break;
//		cout << "case"<= mod)
//		{
//			cout << "No solution" << endl;
//			continue;
//		}
		ll ans = ex_baby_giant(a,b,mod);
		if(ans != -1)
		cout << ans << endl;
		else cout << "No Solution" << endl;
	}
	return 0;
}


数组二分:

#include
#include
#include
#include
#include
#include
#include
using namespace std;
#define clr(x,y) memset(x,y,sizeof x) 
const int maxn = 1000000 + 10;
const double eps = 10e-10;
const int mod = 10e6 + 10; 
typedef long long ll;
struct Baby
{
	ll b;
	ll j;
}baby[maxn];
bool cmp(const Baby &x,const Baby & y)
{
	return x.b != y.b ? (x.b < y.b) : (x.j < y.j);
}
void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y)
{
	if(b == 0)
	{
		d = a; x = 1;y = 0;
		return ;
	}
	ex_gcd(b,a % b,d,y,x);
	y -= a/b * x;
}
ll pow_mod(ll x,ll y,ll mod_val)
{
	ll ans = 1;
	ll t = x % mod_val;
	while(y)
	{
		if(y & 1)
		{
			ans = ans * t % mod_val;
		}
		y >>= 1;
		t = (t * t) % mod_val;
	}
	return ans;
}
ll inv(ll a,ll mod_val)
{
	ll x,y,d;
	ex_gcd(a,mod_val,d,x,y);
	//x 的通解为c * x + b * k;
	return d == 1 ? (x % mod_val + mod_val) % mod_val : -1;
}
ll gcd(ll x,ll y)
{
	return y ? gcd(y,x%y) : x;
}
ll finds(ll val,ll m)
{
	ll l = 0,r = m - 1;
	ll ans = -1;
	while(l <= r)
	{
		ll mid = (l + r) / 2;
		
		if(baby[mid].b > val)
		{
			if(baby[mid].b == val)//保证返回的j是最小的 
			{
				ans =  baby[mid].j;
			}
			r = mid - 1;
		}
		else 
		{
			l = mid + 1;
		}
	}
	return ans;
}
ll ex_baby_gaint(ll A,ll B,ll C)
{
	for(int i = 0; i <= 100; i ++)
	{
		if(pow_mod(A,i,C) == B % C)
		return i;
	}
	ll n= 0,d = 1,g;
	while((g = gcd(A,C)) != 1)
	{
		if(B % g)
		return -1;
		B /= g;
		C /= g;
		n ++;
		d = d * (A / g) % C;
	}
//	cout << A << " " << B << " " << C << " " << n << " " << d << endl;
	ll m = ceil(sqrt((double)C));
	ll K = 1;
	for(ll j = 0; j < m; ++ j)
	{
		baby[j].b = K;
		baby[j].j = j;
		K = K * A % C;
	}
	sort(baby,baby + m,cmp);
	K = 1;
	ll A_invs = pow_mod(inv(A,C),m,C);//A^-m;
	ll d_inv = inv(d,C);//d ^ -1
	if(inv(A,C) == -1 || d_inv == -1)
	{
		return -1;
	}
	for(ll i = 0; i < m; ++ i)
	{
		ll j = finds(K * d_inv % C * B % C,m);
		if(j != -1)
		{
			return i * m + j + n;
		}
		K = K * A_invs % C;
	}
	return -1;
}
ll b,n,p;
int main()
{
	while( ~ scanf("%I64d%I64d%I64d",&b,&p,&n))
	{
		if(!p && !b && !n)
		break;
		ll ans = ex_baby_gaint(b,n,p);
		if(ans == -1)
		{
			puts("No Solution");
			continue;
		}
		printf("%I64d\n",ans);
	}
	return 0;
}



hdu2815

注意k >= z的时候进行返回找不到

#include
#include
#include
#include
#include
#include
#include
using namespace std;
#define clr(x,y) memset(x,y,sizeof x) 
const int maxn = 1000000 + 10;
const double eps = 10e-10;
const int mod = 10e6 + 10; 
typedef long long ll;
struct Baby
{
	ll b;
	ll j;
}baby[maxn];
bool cmp(const Baby & x,const Baby & y)
{
	return x.b != y.b ? (x.b < y.b) : (x.j < y.j);
}
void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y)
{
	if(b == 0)
	{
		d = a; x = 1;y = 0;
		return ;
	}
	ex_gcd(b,a % b,d,y,x);
	y -= a/b * x;
}
ll pow_mod(ll x,ll y,ll mod_val)
{
	ll ans = 1;
	ll t = x % mod_val;
	while(y)
	{
		if(y & 1)
		{
			ans = ans * t % mod_val;
		}
		y >>= 1;
		t = (t * t) % mod_val;
	}
	return ans;
}
ll inv(ll a,ll mod_val)
{
	ll x,y,d;
	ex_gcd(a,mod_val,d,x,y);
	//x 的通解为c * x + b * k;
	return d == 1 ? (x % mod_val + mod_val) % mod_val : -1;
}
ll gcd(ll x,ll y)
{
	return y ? gcd(y,x%y) : x;
}
ll finds(ll val,ll m)
{
	ll l = 0,r = m - 1;
	ll ans = -1;
	while(l <= r)
	{
		ll mid = (l + r) / 2;
		
		if(baby[mid].b >= val)
		{
			if(baby[mid].b == val)
			{
				ans = baby[mid].j;
			}
			r = mid - 1;
		}
		else 
		{
			l = mid + 1;
		}
	}
	return ans;
}
ll ex_baby_gaint(ll A,ll B,ll C)
{
	for(int i = 0; i <= 100; i ++)
	{
		if(pow_mod(A,i,C) == B % C)
		return i;
	}
	ll n= 0,d = 1,g;
	while((g = gcd(A,C)) != 1)
	{
		if(B % g)
		return -1;
		B /= g;
		C /= g;
		n ++;
		d = d * (A / g) % C;
	}
	ll m = ceil(sqrt((double)C));
	ll K = 1;
	for(ll j = 0; j < m; ++ j)
	{
		baby[j].b = K;	
		baby[j].j = j;
		K = K * A % C;
	}
	sort(baby,baby + m,cmp);
	K = 1;
	ll A_invs = pow_mod(inv(A,C),m,C);//A^-m;
	ll d_inv = inv(d,C);//d ^ -1
	for(ll i = 0; i < m; ++ i)
	{
		ll j = finds(K * d_inv % C * B % C,m);
		if(j != -1)
		{
			return i * m + j + n;
		}
		K = K * A_invs % C;
	}
	return -1;
}
ll b,n,p;
int main()
{
	while( ~ scanf("%I64d%I64d%I64d",&b,&p,&n))
	{
		if(n >= p)
		{
			puts("Orz,I can’t find D!");
			continue;
		}
		ll ans = ex_baby_gaint(b,n,p);
		if(ans == -1)
		{
			puts("Orz,I can’t find D!");
			continue;
		}
		printf("%I64d\n",ans);
	}
	return 0;
}


下面给出baby_step_giant_step和ex_baby_step_giant_step的模板:

ll gcd(ll x,ll y)
{
	return y ? gcd(y,x % y) : x;
}
//扩展欧几里得
void ex_gcd(ll a,ll b,ll & d,ll & x,ll & y)
{
	if(b == 0)
	{
		d = a;	 x = 1;y = 0;
		return ;
	}
	ex_gcd(b,a % b,d,y,x);
	y -= a / b * x;
}
//快速幂取模
ll pow_mod(ll x,ll n,ll mod_val)
{
	ll ans = 1;
	ll t = x % mod_val;
	while(n)
	{
		if(n & 1)
		{
			ans = ans * t % mod_val;
		}
		n >>= 1;
		t = t * t % mod_val;
	}
	return ans;
}
//逆元
ll Inv(ll a, ll mod_val)
{
	ll x,y,d;
	ex_gcd(a,mod_val,d,x,y);
	return d == 1 ? (x % mod_val + mod_val) % mod_val : -1;
}
//大数相乘取模
ll Mul(ll a,ll b,ll mod_val)
{
	a %= mod_val;
	b %= mod_val;
	ll ans = 0;
	ll t = a;
	while(b)
	{
		if(b & 1)
		{
			ans = (ans + t) % mod_val;
		}
		b >>= 1;
		t <<= 1;
	}
	return ans;
}
//哈希表
const ll hash_mod = maxn * 10;
ll key[hash_mod],val[hash_mod];
int head[hash_mod],nexts[hash_mod];
struct hash
{
	int tot;
	void Init()
	{
		memset(head,-1,sizeof(head));
		tot = 0;
	}
	void inserts(ll x,ll y)
	{
		ll k = x % hash_mod;
		key[tot] = x;
		val[tot] = y;
		nexts[tot] = head[k];
		head[k] = tot ++;
	}
	ll finds(ll x)
	{
		ll k = x % hash_mod;
		for(ll i = head[k]; i != -1; i = nexts[i])
		{
			if(key[i] == x)
			{
				return val[i];
			}
		}
		return -1;
	}
}hs;
//求解a^x = b %(mod)已知其他三个,求x;
ll baby_giant(ll a,ll b,ll mod_val)
{
	hs.Init();
	ll m = ceil(sqrt((double)mod_val));
	ll cur = 1;
	//baby
	for(ll j = 0; j < m; j ++)
	{
		if(hs.finds(cur) == -1)
		{
			hs.inserts(cur,j);
		}
		cur = cur * a % mod_val;
	}
	//a^-m %mod_val,这是mod_val为素数的时候的求法
	ll _Am = pow_mod(pow_mod(a,mod_val - 2,mod_val),m,mod_val);
	cur = 1;
	//giant
	for(int i = 0; i < m; i ++)
	{
		ll j = hs.finds(cur * b % mod_val);
		if(j != -1)
		{
			return i *m + j;
		}
		cur = cur * _Am % mod_val;
	}
	return -1;
}
ll ex_baby_giant(ll a,ll b, ll mod_val)
{
	hs.Init();
	for(ll i = 1; i <= 100; i ++)
	{
		if(pow_mod(a,i,mod_val) == b % mod_val)
		return i;
	}
	ll g,d = 1,n = 0;
	while((g = gcd(a,mod_val)) != 1)
	{
		if(b % g)
		return -1;
		b /=g;
		mod_val /= g;
		n ++;
		d = d * (a / g) % mod_val;
	}
	ll m = ceil(sqrt(double(mod_val)));
	//baby
	ll cur = 1;
	for(ll j = 0; j < m; j ++)
	{
		if(hs.finds(cur) == -1)
		{
			hs.inserts(cur,j);
		}
		cur = cur * a % mod_val;
	}
	//d^-1
	ll _d = Inv(d,mod_val);
	//d ^ -m
	ll _bm = pow_mod(Inv(a,mod_val),m,mod_val);
	cur = 1;
	//giant
	for(ll i = 0; i < m; i ++)
	{
		ll j = hs.finds(cur * _d % mod_val * b % mod_val);
		if(j != -1)
		{
			return i * m + j + n;
		}
		cur = cur * _bm % mod_val;
	}
	return -1;
}



你可能感兴趣的:(同模方程)