- [总结] 音视频开发工程师之路
二进制怪兽
音视频音视频
前言音视频开发是一个涉及多个技术领域的复杂方向,涵盖了音频处理、视频渲染、编解码技术、流媒体传输等多个方面。以下是一个简要的学习路线指南,帮助你逐步掌握音视频开发的核心技能。基础知识计算机科学基础:掌握操作系统、计算机网络、数据结构和算法等基础知识。数学基础:了解傅里叶变换、线性代数、信号处理等数学知识,这些是音视频编-解码和处理的基石。编程语言:熟练掌握C/C++,这是音视频开发中最常用的语言;
- Java程序员面临抉择:激烈竞争下,转行大模型或是新出路,非常详细收藏我这一篇就够了!
大模型教程
大模型学习学习大模型语言模型人工智能程序员转行
Java程序员转行大模型领域,可以依据以下详细路线进行学习和职业转换:第1阶段:基础知识巩固数学基础:线性代数:矩阵运算、向量空间等。概率论与统计:概率分布、统计推断等。微积分:导数、积分、多变量函数等。Python编程:Python基础:数据类型、控制结构、函数等。Python进阶:面向对象编程、装饰器、生成器等。数据处理:NumPy、Pandas、Matplotlib。第2阶段:机器学习与深度
- linux第八章 git连接本地仓库和gitee
ᰔᩚ. 一怀明月ꦿ
linuxgitlinux
博主主页:@ᰔᩚ.一怀明月ꦿ❤️专栏系列:线性代数,C初学者入门训练,题解C,C的使用文章,「初学」C++,linux座右铭:“不要等到什么都没有了,才下定决心去做”大家觉不错的话,就恳求大家点点关注,点点小爱心,指点指点目录gitgit的作用git的知识点linux上远程链接gitee第一步:linux中安装git第二步:新建git目录第三步:链接仓库1)在gitee中找到仓库的HTTPS2)
- 一文读懂!深度学习 + PyTorch 的超实用学习路线
a小胡哦
深度学习pythonpytorch
深度学习作为人工智能领域的核心技术,正深刻改变着诸多行业。PyTorch则是深度学习实践中备受青睐的框架,它简单易用且功能强大。下面就为大家详细规划深度学习结合PyTorch的学习路线。一、基础知识储备数学基础数学是很重要的!!!线性代数、概率论与数理统计、微积分是深度学习的数学基石。熟悉矩阵运算、概率分布、梯度计算等概念,能帮助理解深度学习模型的原理。例如,在神经网络中,矩阵乘法用于神经元之间的
- 线性代数导引:张量与张量空间
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
线性代数,张量,张量空间,深度学习,机器学习,人工智能1.背景介绍在现代人工智能领域,深度学习和机器学习算法的蓬勃发展,使得对数据的高效处理和表示能力提出了更高的要求。线性代数作为数学基础,为理解和构建这些算法提供了坚实的基础。而张量,作为一种高维数组的表示形式,成为了深度学习和机器学习的核心数据结构。本篇文章将从线性代数的角度出发,深入探讨张量与张量空间的概念,并阐述其在深度学习和机器学习中的重
- 机器学习 - 学习线性模型的重要性
谦亨有终
跟着AI向前走机器学习学习人工智能
在接下来的博文中,我们将重点学习线性模型的回归模型和分类模型,在学习之前,让我们来了解一下学习线性模型的重要性,以及如何入门学习。一、作为初学者如何学习线性模型?作为初学者,要高效学习机器学习以及其中的线性模型,可以遵循以下几个步骤和建议:(一)、机器学习的整体学习策略打好数学基础线性代数:理解向量、矩阵、线性变换等,这些是理解模型表示(如y=w^Tx+b)和算法优化的基础。微积分:掌握导数、梯度
- Matlab基础入门手册(第三章:运算符)
freexyn
matlab线性代数矩阵
目录第三章运算符1.16算术运算1.17算术常用函数1.18逻辑运算1.19关系运算1.20运算符的优先级1.21兼容性第三章运算符1.16算术运算1.算术运算(arithmetic)主要指加减乘除、幂和舍入等运算2.说明Matlab有两种不同类型的算术运算:数组运算和矩阵运算数组运算基于元素的运算,支持任意向量、矩阵和多维数组矩阵运算遵循线性代数的规则字符(.)区分矩阵运算和数组运算数组运算和矩
- 机器学习数学基础:21.特征值与特征向量
@心都
机器学习概率论人工智能
一、引言在现代科学与工程的众多领域中,线性代数扮演着举足轻重的角色。其中,特征值、特征向量以及相似对角化的概念和方法,不仅是线性代数理论体系的核心部分,更是解决实际问题的有力工具。无论是在物理学中描述系统的振动模式,还是在计算机科学里进行数据降维与图像处理,它们都发挥着关键作用。本教程将深入且全面地对这些内容展开讲解,旨在帮助读者透彻理解并熟练运用相关知识。二、基础知识准备(一)对角矩阵的高次幂计
- 书籍-《机器学习数学基础》
机器学习深度学习数学
书籍:MathematicsforMachineLearning作者:MarcPeterDeisenroth,A.AldoFaisal,ChengSoonOng出版:CambridgeUniversityPress编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《机器学习数学基础》01书籍介绍理解机器学习所需的基本数学工具包括线性代数、解析几何、矩阵分解、向量微积分、最优化、概率论和统计学。这
- 2.【线性代数】——矩阵消元
sda42342342423
math线性代数矩阵
二矩阵消元1.消元法2.单行或者单列的矩阵乘法2.1单行矩阵乘法2.2单列矩阵乘法3.用矩阵记录消元过程(初等矩阵)【行的线性组合(数乘和加法)】3.1row2-3row1的矩阵描述3.2row3-2row2的矩阵描述3.3矩阵乘法的性质4.用矩阵记录消元过程(置换矩阵)行列交换4.1行交换4.1列交换5.逆矩阵1.消元法求解方程组{x+2y+z=23x+8y+z=124y+z=2\begin{c
- 《麻省理工公开课:线性代数》 中文学习笔记
派森先生
人工智能线性代数学习笔记
《麻省理工公开课:线性代数》是麻省理工公开课中广为流传的一门好课。这是我学习MIT线性代数课程LinearAlgebra的中文参考学习笔记。希望在自己学习的同时,也对大家学习有所帮助。笔记特点:笔记与原课程视频一一对应,可以帮助大家一边听课一边理解。通过图解来使得笔记尽量通俗易懂课程视频共35节,单个视频平均时长不超过60分钟,预计一个月可以学习完毕。本笔记所用资料,图片等,如侵犯了您的图片版权请
- 高等代数笔记5:线性变换
p_wh
高等代数
线性映射的定义与性质线性映射的定义数学研究的主题是空间与变换,对于代数学而言,空间指的是赋予了某种运算结构的集合,变换则是空间到空间的映射。线性代数则是研究线性空间及其上的映射。但是,研究的对象不是所有的映射,而是特殊的一类映射,这类映射和线性运算紧密联系,称为线性映射。定义5.1V1,V2V_1,V_2V1,V2是KKK的两个线性空间,f:V1→V2f:V_1\toV_2f:V1→V2是V1V_
- 【深入探索-deepseek】高等数学与AI的因果关系
我的青春不太冷
人工智能机器学习数学
目录数学在AI不同领域的应用区别一、计算机视觉领域1.线性代数2.微积分3.概率论与统计二、自然语言处理领域三、语音识别领域四、数学在AI不同领域应用的逻辑图五、参考资料数学在AI不同领域的应用区别一、计算机视觉领域1.线性代数图像变换:想象我们有一张二维图片,图片里有个点,它的位置用坐标((x,y))表示。现在我们想把这个点绕着图片的原点(就像把纸钉在墙上,以钉子的位置为中心)逆时针旋转一定角度
- AI基础 -- AI学习路径图
sz66cm
人工智能学习
人工智能从数学到大语言模型构建教程第一部分:AI基础与数学准备1.绪论:人工智能的过去、现在与未来人工智能的定义与发展简史从符号主义到统计学习、再到深度学习与大模型的变迁本书内容概览与学习路径指引2.线性代数与矩阵运算向量与矩阵的基本概念矩阵分解(特征值分解、奇异值分解)张量运算简介(为后续深度学习做准备)在机器学习和深度学习中的应用示例3.概率论与统计基础随机变量、分布与期望方差贝叶斯理论与最大
- AGI方向研究
微醺欧耶
agi
要成为一名合格的AGI(通用人工智能)实习生,你需要具备跨学科的知识体系、扎实的技术能力以及前沿研究视野。以下是基于你当前基础的能力扩展方向、关键研究领域以及未来发展的详细分析:---###**一、AGI实习生需具备的核心能力**####1.**数学与理论基础**-**数学基础**:线性代数(矩阵运算、特征值)、概率统计(贝叶斯理论、分布模型)、微积分(梯度优化)、信息论(熵、KL散度)。-**计
- 【Paddle】PCA线性代数基础 + 领域应用:人脸识别算法(1.1w字超详细:附公式、代码)
是Yu欸
数学建模数据挖掘Paddlepaddle线性代数python机器学习人工智能人脸识别数学建模
【Paddle】PCA线性代数基础及领域应用写在最前面一、PCA线性代数基础1.PCA的算法原理2.PCA的线性代数基础2.1标准差StandardDeviation2.2方差Variance2.3协方差Covariance2.4协方差矩阵TheCovarianceMatrix2.5paddle代码demo①:计算协方差矩阵2.6特征向量Eigenvectors标准化处理2.7paddle代码de
- AI学习专题(一)LLM技术路线
王钧石的技术博客
大模型人工智能学习ai
阶段1:AI及大模型基础(1-2个月)数学基础线性代数(矩阵、特征值分解、SVD)概率论与统计(贝叶斯定理、极大似然估计)最优化方法(梯度下降、拉格朗日乘子法)编程&框架Python(NumPy、Pandas、Matplotlib)PyTorch&TensorFlow基础HuggingFaceTransformers入门深度学习基础机器学习基础(监督/无监督学习、正则化、过拟合)反向传播、优化器(
- 深度学习-数学基础-01
神经网络深度学习
下面的内容是豆包总结的。学习神经网络需要以下数学基础:线性代数向量与矩阵神经网络中的数据通常以向量(如输入特征向量)和矩阵(如权重矩阵)的形式表示。理解向量的点积、加法、减法等运算,以及矩阵的乘法、转置等操作至关重要。例如,在一个简单的全连接神经网络中,输入层到隐藏层的计算就是通过输入向量与权重矩阵相乘来实现的。矩阵的秩、特征值和特征向量的概念在神经网络的一些高级主题如主成分分析(PCA)降维和深
- 机器学习数学基础:20.方程组解的结构
@心都
机器学习数学基础机器学习人工智能
一、教程简介本教程专门为线性代数零基础的小白打造,旨在全面且细致地讲解解方程组与基础解系的相关知识,助力大家逐步扎实地掌握这一重要内容板块。二、知识目标透彻理解非齐次与齐次线性方程组的定义、本质区别以及对应的解法。熟练掌握判断方程组解的存在性的方法,精准把握秩在其中起到的决定性作用。能够独立且准确地求解齐次线性方程组,并规范地表示出其通解。精通判断一个向量组是否为齐次线性方程组的基础解系的方法,并
- 《量化绿皮书》Chapter 2 Brain Teasers 脑筋急转弯
量仔搞靓化
量化绿皮书金融
《APracticalGuideToQuantitativeFinanceInterviews》,被称为量化绿皮书,是经典的量化求职刷题书籍之一,包含以下七章:Chapter1GeneralPrinciples通用技巧Chapter2BrainTeasers脑筋急转弯Chapter3CalculusandLinearAlgebra微积分与线性代数Chapter4ProbabilityTheory概
- 自动驾驶领域成长方案
树上求索
自动驾驶人工智能机器学习
一、学习目标成为自动驾驶领域专家,全面掌握自动驾驶技术体系,能独立进行自动驾驶系统设计、开发与优化,解决实际工程问题。二、成长阶段(一)基础理论奠基期(1-2年)专业知识学习:学习数学(高等数学、线性代数、概率论与数理统计、数值分析等),为理解算法和模型提供数学基础;深入研究自动驾驶涉及的专业课程,如控制理论、传感器原理(激光雷达、摄像头、毫米波雷达等)、机器学习(监督学习、无监督学习、深度学习)
- 深度学习篇---深度学习相关知识点&关键名词含义
Ronin-Lotus
深度学习篇深度学习人工智能机器学习pytorchpaddlepaddlepython
文章目录前言第一部分:相关知识点一、基础铺垫层(必须掌握的核心基础)1.数学基础•线性代数•微积分•概率与统计2.编程基础3.机器学习基础二、深度学习核心层(神经网络与训练机制)1.神经网络基础2.激活函数(ActivationFunction)3.损失函数(LossFunction)4.优化算法(Optimization)5.反向传播(Backpropagation)6.正则化与调优三、进阶模型
- NumPy学习
Hoshino _Ai
numpy
基础:概念:全称是“NumericPython”,Python的第三方扩展包,主要用来计算、处理一维或多维数组优点:便捷高效地处理大量数据ndarray对象可以用来构建多维数组能够执行傅立叶变换与重塑多维数组形状提供了线性代数,以及随机数生成的内置函数与python列表区别:NumPy数组是同质数据类型(homogeneous),即数组中的所有元素必须是相同的数据类型。数据类型在创建数组时指定,并
- 可逆矩阵的概念、定理、判断条件和性质(线性代数基础)
盼达思文体科创
考研数二复习线性代数矩阵机器学习考研学习人工智能
可逆矩阵的概念、定理、判断条件和性质可逆矩阵的概念定义:设AAA为nnn阶矩阵,如果存在nnn阶矩阵BBB使得下式成立:AB=BA=E(E是单位矩阵)AB=BA=E(E是单位矩阵)AB=BA=E(E是单位矩阵)则称AAA是可逆矩阵或者非奇异矩阵,其中BBB是AAA的逆矩阵,记做A−1=BA^{-1}=BA−1=B个人理解:事实上,该公式和数学中倒数的概念很像。对于一个非零实数aaa,它的倒数定义为
- 伴随矩阵的定义详解(线性代数基础概念)
盼达思文体科创
矩阵线性代数考研
伴随矩阵的定义和推导过程(考研线性代数基础)伴随矩阵是一个线代里比较难理解的概念,计算起来也稍显复杂。我翻阅了教科书发现,伴随矩阵的定义用到了行列式和代数余子式的概念。所以专门写一篇文章理清下思路,希望能从头到尾把这个概念吃透。行列式(Determinant,简写为小写字母det)概念:行列式是一个数,表示不同行不同列元素乘积的代数和。以行列式AAA为例,其代数表示如下detA=∣a1a2a3b
- 线性方程组、齐次与非齐次的基本概念(线性代数基础)
盼达思文体科创
考研数二复习线性代数机器学习算法考研学习数学建模矩阵
线性方程组、齐次与非齐次的基本概念(线性代数基础)线性方程一个线性方程是指其变量的每项都是线性的,即每个变量的最高次方为1。一般形式如下:a1x1+a2x2+⋯+anxn=ba_1x_1+a_2x_2+⋯+a_nx_n=ba1x1+a2x2+⋯+anxn=b其中:a1,a2,…,ana_1,a_2,…,a_na1,a2,…,an是常数系数x1,x2,…,xnx1,x2,…,xnx1,x2,…,xn
- 2025最新最全AI大模型系统学习路线
大模型老炮
人工智能学习大模型知识图谱大模型入门AI大模型大模型学习
随着技术的进步,大模型如OpenAI的GPT-4和Sora、Google的BERT和Gemini等已经展现出了惊人的能力-从理解和生成自然语言到创造逼真的图像及视频。所以掌握大模型的知识和技能变得越来越重要。下面是学习大模型的一些建议,供大家参考。必备基础知识**数学基础:**深入理解线性代数、概率论和统计学、微积分等基础数学知识。**编程基础:**熟练掌握至少一种编程语言,推荐Python,因为
- 2025年最新最全的大模型学习路线规划,对于零基础入门到精通的学习者来说,可以遵循以下阶段进行
程序员辣条
学习大模型学习AI产品经理人工智能LLama大模型大模型教程
2025年最新最全的大模型学习路线规划,对于零基础入门到精通的学习者来说,可以遵循以下阶段进行:一、基础准备阶段数学基础:学习线性代数、微积分、概率论与数理统计等基础知识。这些数学基础对于理解大模型的原理和算法至关重要。编程语言:熟练掌握Python编程,这是大模型开发的首选语言。同时,了解常用的深度学习框架,如TensorFlow和PyTorch。深度学习基础:学习深度学习的基本原理和常用算法,
- OpenGL学习笔记8——变换
lxbhahaha
#OpenGLopenglglslcpp图形学
OpenGL学习笔记8——变换1概念2应用变换2.1GLM2.2给四边形应用变换1概念基本上都是线性代数的知识,矩阵的运算、向量的运算。就不多写了,挑几个关键点的记一下。点乘,向量和向量之间做点乘,结果是一个标量。点乘是通过将对应分量逐个相乘,然后再把所得积相加。相当于求投影。用来计算角度很方便,可能用在光照的计算。叉乘,向量和向量之间做叉乘,结果还是一个向量,并且这个向量会垂直于两个向量所在的平
- Python中的有限元方法:详细指南与代码实现,用于计算电磁学组建模电磁现象
快撑死的鱼
python算法解析python开发语言
第一部分:简介与背景在现代工程和科学中,计算电磁学已经成为了一个不可或缺的工具。它为我们提供了一种方法,可以在计算机上模拟电磁现象,而不是在实验室中进行实验。有限元方法(FEM)是其中的一种流行的数值方法,它可以用于解决各种各样的工程问题,包括电磁学问题。有限元方法的基本思想是将一个连续的问题离散化,将其转化为在有限数量的点上求解的问题。这样,我们可以使用线性代数的技术来求解这些问题,从而得到近似
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。