最终让图片目标检测功能封装到动态库文件中,供其它函数直接调用
软件:
1.visual studio 2015
2.opencv3.4.7(版本尽量新,3.4.0貌似不行)
文件:
1.darknet训练完成后的weights格式文件yolov3.weights
2.test时的cfg文件yolov3.cfg
3.样本names文件coco.names
4.测试需求的jpg图片cat.jpg
3.2.1新建OpencvDaeknet.cpp文件,代码如下:
// It is based on the OpenCV project.
#include "OpencvDarknet.h"
#include
#include
#include
#include
#include
using namespace cv;
using namespace dnn;
using namespace std;
// Initialize the parameters
float confThreshold = 0.5; // Confidence threshold
float nmsThreshold = 0.4; // Non-maximum suppression threshold
int inpWidth = 416; // Width of network's input image
int inpHeight = 416; // Height of network's input image
vector<string> classes;
// Remove the bounding boxes with low confidence using nms
vector<messages> postprocess(Mat& frame, const vector<Mat>& out);
// Draw the predicted bounding box
void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame);
// Get the names of the output layers
vector<String> getOutputsNames(const Net& net);
vector<messages> detect(string names,string cfg,string weights,string img)
{
vector<messages> vctRes;
// Load names of classes
string classesFile = names;
ifstream ifs(classesFile.c_str());
string line;
while (getline(ifs, line)) classes.push_back(line);
// Give the configuration, weight and image files for the model
String modelConfiguration = cfg;
String modelWeights = weights;
string image = img;
// Load the network
Net net = readNetFromDarknet(modelConfiguration, modelWeights);
net.setPreferableBackend(3);
net.setPreferableTarget(DNN_TARGET_CPU);
// Open a video file or an image file or a camera stream.
string outputFile;
Mat frame, blob;
// Create a window
static const string kWinName = "Deep learning object detection in OpenCV";
namedWindow(kWinName, WINDOW_NORMAL);
try {
ifstream ifile(image);
if (!ifile) throw("error");
frame = imread(image);
image.replace(image.end() - 4, image.end(), "_yolo_out_cpp.jpg");
outputFile = image;
}
catch (...) {
cout << "Could not open the input image/video stream" << endl;
}
// Create a 4D blob from a frame.
blob = blobFromImage(frame, 1 / 255.0, cvSize(inpWidth, inpHeight), Scalar(0, 0, 0), true, false);
//Sets the input to the network
net.setInput(blob);
// Runs the forward pass to get output of the output layers
vector<Mat> outs;
net.forward(outs, getOutputsNames(net));
// Remove the bounding boxes with low confidence
vctRes = postprocess(frame, outs);
// Put efficiency information.
// The function getPerfProfile returns the overall time for inference(t)
// and the timings for each of the layers(in layersTimes)
vector<double> layersTimes;
double freq = getTickFrequency() / 1000;
double t = net.getPerfProfile(layersTimes) / freq;
string label = format("Inference time for a frame : %.2f ms", t);
putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 255));
// Write the frame with the detection boxes
Mat detectedFrame;
frame.convertTo(detectedFrame, CV_8U);
imwrite(outputFile, detectedFrame);
imshow(kWinName, frame);
//show the output
for (int i = 0; i < vctRes.size(); i++)
{
messages mess = vctRes[i];
cout << mess.index << " " << mess.x << " " << mess.y << " " << mess.rotate << endl;
}
waitKey(0);
return vctRes;
}
// Remove the bounding boxes with low confidence using nms
vector<messages> postprocess(Mat& frame, const vector<Mat>& outs)
{
vector<int> classIds;
vector<float> confidences;
vector<Rect> boxes;
messages mess;
vector<messages> vctRes;
for (size_t i = 0; i < outs.size(); ++i)
{
// Scan through all the bounding boxes output from the network and
// keep only the ones with high confidence scores.
// Assign the box's class label as the class
// with the highest score for the box.
float* data = (float*)outs[i].data;
for (int j = 0; j < outs[i].rows; ++j, data += outs[i].cols)
{
Mat scores = outs[i].row(j).colRange(5, outs[i].cols);
Point classIdPoint;
double confidence;
// Get the value and location of the maximum score
minMaxLoc(scores, 0, &confidence, 0, &classIdPoint);
if (confidence > confThreshold)
{
int centerX = (int)(data[0] * frame.cols);
int centerY = (int)(data[1] * frame.rows);
int width = (int)(data[2] * frame.cols);
int height = (int)(data[3] * frame.rows);
int left = centerX - width / 2;
int top = centerY - height / 2;
classIds.push_back(classIdPoint.x);
confidences.push_back((float)confidence);
boxes.push_back(Rect(left, top, width, height));
}
}
}
// Perform nms to eliminate redundant overlapping boxes with
// lower confidences
vector<int> indices;
NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices);
for (size_t i = 0; i < indices.size(); ++i)
{
int idx = indices[i];
Rect box = boxes[idx];
//cout << box.x << " " << box.y <<" "<
drawPred(classIds[idx], confidences[idx], box.x, box.y, box.x + box.width, box.y + box.height, frame);
mess.index = to_string(idx);
mess.x = box.x + box.width / 2;
mess.y = box.y + box.height / 2;
mess.rotate = box.width / box.height >= 1;
vctRes.push_back(mess);
}
return vctRes;
}
// Draw the predicted bounding box
void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame)
{
//Draw a rectangle displaying the bounding box
rectangle(frame, Point(left, top), Point(right, bottom), Scalar(255, 178, 50), 3);
//Get the label for the class name and its confidence
string label = format("%.2f", conf);
if (!classes.empty())
{
CV_Assert(classId < (int)classes.size());
label = classes[classId] + ":" + label;
}
//Display the label at the top of the bounding box
int baseLine;
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
top = max(top, labelSize.height);
rectangle(frame, Point(left, top - round(1.5*labelSize.height)), Point(left + round(1.5*labelSize.width), top + baseLine), Scalar(255, 255, 255), FILLED);
putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 0, 0), 1);
}
// Get the names of the output layers
vector<String> getOutputsNames(const Net& net)
{
static vector<String> names;
if (names.empty())
{
// Get the indices of the output layers,
// i.e. the layers with unconnected outputs
vector<int> outLayers = net.getUnconnectedOutLayers();
//get the names of all the layers in the network
vector<String> layersNames = net.getLayerNames();
// Get the names of the output layers in names
names.resize(outLayers.size());
for (size_t i = 0; i < outLayers.size(); ++i)
names[i] = layersNames[outLayers[i] - 1];
}
return names;
}
3.2.2新建OpencvDaeknet.h文件,代码如下:
#pragma once
#include
#include
using namespace std;
typedef struct messages {
string index;
float x;
float y;
bool rotate;
}messages;
__declspec(dllexport) vector<messages> detect(string names, string cfg, string weights, string image);
3.2.3 点击 生成–>重新生成解决方案 后生成dll文件
3.3.1 将上面opencvdarknet产生的OpencvDarknet.dll,OpencvDarknet.lib,OpencvDarknet.h复制到Opencvdarknet_test文件里面,详情如下:
OpencvDarknet.dll,OpencvDarknet.lib文件
OpencvDarknet.h 文件
复制完以后的现状
3.3.2 将OpencvDarknet.h 文件添加到头文件中,OpencvDarknet.lib文件添加到资源文件中,最后新建源文件OpencvDarknet_test.cpp 文件,OpencvDarknet_test.cpp如下:
#include
#include "OpencvDarknet.h"
#include
using namespace std;
void main()
{
string names = "coco.names";
string cfg = "yolov3.cfg";
string weights = "yolov3.weights";
string img = "cat.jpg";
detect( names, cfg, weights, img);
}
3.3.3 将文章开头需要的文件复制到Opencvdarknet_test文件夹里面,如下:
cat.jpg待检测图片文件,coco.names文件,yolov3.cfg文件,yolov3.weights文件
参考链接:
https://www.aiuai.cn/aifarm822.html
https://blog.csdn.net/m0_37170593/article/details/76445972