http://blog.csdn.net/pipisorry/article/details/37742423
matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图。而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中。它的文档相当完备,并且Gallery页面 中有上百幅缩略图,打开之后都有源程序。因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/复制/粘贴一下,基本上都能搞定。
在Linux下比较著名的数据图工具还有gnuplot,这个是免费的,Python有一个包可以调用gnuplot,但是语法比较不习惯,而且画图质量不高。而Matplotlib则比较强:Matlab的语法、python语言、latex的画图质量(还可以使用内嵌的latex引擎绘制的数学公式)。
可以在Ipython中输入类似"plt.plot??"的命令查看pyplot模块的函数是如何对各种绘图对象进行包装的。
如,用下面的代码先获得axes对象再用ax来操作
ax = plt.gca() ax = plt.axes()
地如设置xy轴的tickers就要用ax.yaxis来操作
ax.yaxis.set_minor_locator(yminorLocator)
pip install numpy
pip install matplotlib
matplotlib安装出错
ImportError: libBLT.2.4.so.8.6: cannot open shared object file: No such file or directory, please install the python3-tk package[import matplotlib.pyplot as plt fails with error about python-tk]
检测是否安装成功:
>>> import numpy
>>> numpy.__version__
>>> import matplotlib
>>> matplotlib.__version__
工科生说Matlab完爆其他
数学系的说Mathematica高贵冷艳
统计系的说R语言作图领域天下无敌
计算机系的说Python低调奢华有内涵
[如何在论文中画出漂亮的插图]
matplotlib的pyplot子库提供了和matlab类似的绘图API,方便用户快速绘制2D图表。
plt.figure(figsize=(8,4))
也可以不创建绘图对象直接调用接下来的plot函数直接绘图,matplotlib会为我们自动创建一个绘图对象!!
如果需要同时绘制多幅图表的话,可以是给figure传递一个整数参数指定图标的序号,如果所指定序号的绘图对象已经存在的话,将不创建新的对象,而只是让它成为当前绘图对象。
figsize参数:指定绘图对象的宽度和高度,单位为英寸;dpi参数指定绘图对象的分辨率,即每英寸多少个像素,缺省值为80。因此本例中所创建的图表窗口的宽度为8*80 = 640像素。
但是用show()出来的工具栏中的保存按钮保存下来的png图像的大小是800*400像素。这是因为保存图表用的函数savefig使用不同的DPI配置,savefig函数也有一个dpi参数,如果不设置的话,将使用matplotlib配置文件中的配置,此配置可以通过如下语句进行查看:>>>matplotlib.rcParams["savefig.dpi"]100
plt.plot(years, price, 'b*')#,label="$cos(x^2)$")
plt.plot(years, price, 'r')
Note:
1. 第一句将x,y数组传递给plot
2.通过第三个参数"b--"指定曲线的颜色和线型,这个参数称为格式化参数,它能够通过一些易记的符号快速指定曲线的样式。其中b表示蓝色,"--"表示线型为虚线。
3. 用关键字参数指定各种属性:label : 给所绘制的曲线一个名字,此名字在图示/图例(legend)中显示。只要在字符串前后添加"$"符号,matplotlib就会使用其内嵌的latex引擎绘制的数学公式。color : 指定曲线的颜色linewidth : 指定曲线的宽度
具体参见【附录 - matplotlib中的作图参数】
plt.xlabel("years(+2000)") #设置X轴的文字
plt.ylabel("housing average price(*2000 yuan)")
plt.ylim(0, 15) #设置Y轴的范围
plt.title('line_regression & gradient decrease') #设置图表的标题
plt.legend() #显示图示
设置xlabel和ylabel显示的大小
import matplotlib matplotlib.rc('xtick', labelsize=18) matplotlib.rc('ytick', labelsize=18)
我们希望在 的位置给两条函数曲线加上一个注释。首先,我们在对应的函数图像位置上画一个点;然后,向横轴引一条垂线,以虚线标记;最后,写上标签。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
... t = 2*np.pi/3 plot([t,t],[0,np.cos(t)], color ='blue', linewidth=2.5, linestyle="--") scatter([t,],[np.cos(t),], 50, color ='blue') annotate(r'$\sin(\frac{2\pi}{3})=\frac{\sqrt{3}}{2}$', xy=(t, np.sin(t)), xycoords='data', xytext=(+10, +30), textcoords='offset points', fontsize=16, arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) plot([t,t],[0,np.sin(t)], color ='red', linewidth=2.5, linestyle="--") scatter([t,],[np.sin(t),], 50, color ='red') annotate(r'$\cos(\frac{2\pi}{3})=-\frac{1}{2}$', xy=(t, np.cos(t)), xycoords='data', xytext=(-90, -50), textcoords='offset points', fontsize=16, arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) ... |
坐标轴上的记号标签被曲线挡住了,作为强迫症患者(雾)这是不能忍的。我们可以把它们放大,然后添加一个白色的半透明底色。这样可以保证标签和曲线同时可见。
1 2 3 4 5 |
... for label in ax.get_xticklabels() + ax.get_yticklabels(): label.set_fontsize(16) label.set_bbox(dict(facecolor='white', edgecolor='None', alpha=0.65 )) ... |
plt.text(0.5,0.8,'subplot words',color='blue',ha='center',transform=ax.trans Axes)
plt.figtext(0.1,0.92,'figure words',color='green')
plt.annotate('buttom',xy=(0,0),xytext=(0.2,0.2),arrowprops=dict(facecolor='blue', shrink=0.05))
[matplotlib绘图,图标注释(2) ]
Matplotlib 里的常用类的包含关系为 Figure -> Axes -> (Line2D, Text, etc.)一个Figure对象可以包含多个子图(Axes),在matplotlib中用Axes对象表示一个绘图区域,可以理解为子图。
方式1:block=False参数或者plt.show(0)
from matplotlib.pyplot import plot, draw, show def p(): plot([1, 2, 3]) show(block=False) p() print('continue computation') input()但是在外部应该加一个input()输入enter结束图形显示,否则鼠标点击是关闭不了图形的。
方式2:draw()
from matplotlib.pyplot import plot, draw, show def p(): plot([1, 2, 3]) draw() p() print('continue computation') # at the end call show to ensure window won't close. show()唯一的缺点就是,show()函数放在了绘图函数外了。
方式3:使用多线程
from multiprocessing import Process from matplotlib import pyplot as plt def p(args): plt.plot([1, 2, 3]) plt.show() p = Process(target=p, args=([1, 2, 3],)) p.start() print('continue computation') p.join()
唯一的缺点就是要写多线程的代码,但是至少plot模块都在一个函数中。
Note: target应为函数名而不应该是函数调用,否则还是会绘图阻止程序向下运行。
[Is there a way to detach matplotlib plots so that the computation can continue?]
plt.cla()
plt.close(0)# 关闭图 0
plt.close('all') 关闭所有图
可以调用plt.savefig()将当前的Figure对象保存成图像文件,图像格式由图像文件的扩展名决定。下面的程序将当前的图表保存为“test.png”,并且通过dpi参数指定图像的分辨率为 120,因此输出图像的宽度为“8X120 = 960”个像素。
plt.savefig("test.png",dpi=120)
也可以通过show()出来的图形界面手动保存和设置
matplotlib中绘制完成图形之后通过show()展示出来,我们还可以通过图形界面中的工具栏对其进行设置和保存
matplotlib修改图片大小:图形界面下方工具栏可以设置图形上下左右的边距
如果想在跑程序外部查看图片,可以这样:
plt.savefig('/tmp/1.png') subprocess.run('xdg-open /tmp/1.png', shell=True)有个问题就是绘制的图中横纵坐标下面的+3.156e1代表什么意思?也不是坐标值的单位,那是什么呢。。。
5. 绘制多子图
可以使用subplot()快速绘制包含多个子图的图表,它的调用形式如下:
subplot(numRows, numCols, plotNum)
matplotlib.pyplot.
subplots
(nrows=1, ncols=1, sharex=False, sharey=False, squeeze=True, subplot_kw=None, gridspec_kw=None, **fig_kw)
subplot将整个绘图区域等分为numRows行* numCols列个子区域,然后按照从左到右,从上到下的顺序对每个子区域进行编号,左上的子区域的编号为1。如果numRows,numCols和plotNum这三个数都小于10的话,可以把它们缩写为一个整数,例如subplot(323)和subplot(3,2,3)是相同的。subplot在plotNum指定的区域中创建一个轴对象。如果新创建的轴和之前创建的轴重叠的话,之前的轴将被删除。
通过axisbg参数给每个轴设置不同的背景颜色。
subplot()返回它所创建的Axes对象,我们可以将它用变量保存起来,然后用sca()交替让它们成为当前Axes对象,并调用plot()在其中绘图。
调节轴之间的间距和轴与边框之间的距离
当绘图对象中有多个轴的时候,可以通过工具栏中的Configure Subplots按钮,交互式地调节轴之间的间距和轴与边框之间的距离。
如果希望在程序中调节的话,可以调用subplots_adjust函数,它有left, right, bottom, top, wspace, hspace等几个关键字参数,这些参数的值都是0到1之间的小数,它们是以绘图区域的宽高为1进行正规化之后的坐标或者长度。
[matplotlib.pyplot.
subplots_adjust
]
[matplotlib.pyplot.
subplots
]
6.绘制多图表
如果需要同时绘制多幅图表,可以给figure()传递一个整数参数指定Figure对象的序号,如果序号所指定的Figure对象已经存在,将不创建新的对象,而只是让它成为当前的Figure对象。
7. 在图表中显示中文
matplotlib的缺省配置文件中所使用的字体无法正确显示中文。为了让图表能正确显示中文,可以有几种解决方案。
比较简便的方式是,中文字符串用unicode格式,例如:u''测试中文显示'',代码文件编码使用utf-8 加上" # coding = utf-8 "一行。
[matplotlib输出图象的中文显示问题]
8. 面向对象画图
matplotlib API包含有三层,Artist层处理所有的高层结构,例如处理图表、文字和曲线等的绘制和布局。通常我们只和Artist打交道,而不需要关心底层的绘制细节。
直接使用Artists创建图表的标准流程如下: