DataX安装及基本使用

前置准备

这里我们演示 MySQL 和 HDFS 之间的数据导入导出,需要预先安装 Hadoop集群。Hadoop 集群的安装教程如下:

Linux下jdk的安装

Linux下Python的安装-视频教程

Hadoop单机伪分布式-视频教程

Hadoop完全分布式集群环境搭建-视频教程

HA(高可用)-Hadoop集群环境搭建视频+图文教程

一、DataX 概述

DataX 是一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL、Oracle等)、HDFS、Hive、ODPS、HBase、FTP等各种异构数据源之间稳定高效的数据同步功能。

二、安装

2.1 下载并解压

源码地址:https://github.com/alibaba/DataX

这里我下载的是最新版本的 DataX3.0 。下载地址为:http://datax-opensource.oss-cn-hangzhou.aliyuncs.com/datax.tar.gz

# 下载后进行解压
[xiaokang@hadoop ~]$ tar -zxvf datax.tar.gz -C /opt/software/

2.2 运行自检脚本

[xiaokang@hadoop ~]$ cd /opt/software/datax/
[xiaokang@hadoop datax]$ bin/datax.py job/job.json

出现以下界面说明DataX安装成功

三、基本使用

3.1 从stream读取数据并打印到控制台

1. 查看官方json配置模板

[xiaokang@hadoop ~]$ python /opt/software/datax/bin/datax.py -r streamreader -w streamwriter

DataX (DATAX-OPENSOURCE-3.0), From Alibaba !
Copyright (C) 2010-2017, Alibaba Group. All Rights Reserved.


Please refer to the streamreader document:
     https://github.com/alibaba/DataX/blob/master/streamreader/doc/streamreader.md 

Please refer to the streamwriter document:
     https://github.com/alibaba/DataX/blob/master/streamwriter/doc/streamwriter.md 
 
Please save the following configuration as a json file and  use
     python {DATAX_HOME}/bin/datax.py {JSON_FILE_NAME}.json 
to run the job.

{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "streamreader", 
                    "parameter": {
                        "column": [], 
                        "sliceRecordCount": ""
                    }
                }, 
                "writer": {
                    "name": "streamwriter", 
                    "parameter": {
                        "encoding": "", 
                        "print": true
                    }
                }
            }
        ], 
        "setting": {
            "speed": {
                "channel": ""
            }
        }
    }
}

2. 根据模板编写json文件

{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "streamreader", 
                    "parameter": {
                        "column": [
							{
								"type":"string",
								"value":"xiaokang-微信公众号:小康新鲜事儿"
							},
							{
								"type":"string",
								"value":"你好,世界-DataX"
							}
                        ], 
                        "sliceRecordCount": "10"
                    }
                }, 
                "writer": {
                    "name": "streamwriter", 
                    "parameter": {
                        "encoding": "utf-8", 
                        "print": true
                    }
                }
            }
        ], 
        "setting": {
            "speed": {
                "channel": "2"
            }
        }
    }
}

3. 运行Job

[xiaokang@hadoop json]$ /opt/software/datax/bin/datax.py ./stream2stream.json

3.2 MySQL数据导入到HDFS

示例:导出 MySQL 数据库中的 help_keyword 表到 HDFS 的 /datax目录下(此目录必须提前创建)。

注:help_keyword 是 MySQL 内置的一张字典表,之后的示例均使用这张表。

1. 查看官方json配置模板

[xiaokang@hadoop json]$ python /opt/software/datax/bin/datax.py -r mysqlreader -w hdfswriter

DataX (DATAX-OPENSOURCE-3.0), From Alibaba !
Copyright (C) 2010-2017, Alibaba Group. All Rights Reserved.


Please refer to the mysqlreader document:
     https://github.com/alibaba/DataX/blob/master/mysqlreader/doc/mysqlreader.md 

Please refer to the hdfswriter document:
     https://github.com/alibaba/DataX/blob/master/hdfswriter/doc/hdfswriter.md 
 
Please save the following configuration as a json file and  use
     python {DATAX_HOME}/bin/datax.py {JSON_FILE_NAME}.json 
to run the job.

{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "mysqlreader", 
                    "parameter": {
                        "column": [], 
                        "connection": [
                            {
                                "jdbcUrl": [], 
                                "table": []
                            }
                        ], 
                        "password": "", 
                        "username": "", 
                        "where": ""
                    }
                }, 
                "writer": {
                    "name": "hdfswriter", 
                    "parameter": {
                        "column": [], 
                        "compress": "", 
                        "defaultFS": "", 
                        "fieldDelimiter": "", 
                        "fileName": "", 
                        "fileType": "", 
                        "path": "", 
                        "writeMode": ""
                    }
                }
            }
        ], 
        "setting": {
            "speed": {
                "channel": ""
            }
        }
    }
}

2. 根据模板编写json文件

mysqlreader参数解析:

hdfswriter参数解析:

{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "mysqlreader", 
                    "parameter": {
                        "column": [
							"help_keyword_id",
							"name"
                        ], 
                        "connection": [
                            {
                                "jdbcUrl": [
									"jdbc:mysql://192.168.1.106:3306/mysql"
                                ], 
                                "table": [
									"help_keyword"
                                ]
                            }
                        ], 
                        "password": "xiaokang", 
                        "username": "root"
                    }
                }, 
                "writer": {
                    "name": "hdfswriter", 
                    "parameter": {
                        "column": [
	                        {
								"name":"help_keyword_id",
								"type":"int"
	                        },
	                        {
								"name":"name",
								"type":"string"
	                        }
                        ], 
                        "defaultFS": "hdfs://hadoop:9000", 
                        "fieldDelimiter": "|", 
                        "fileName": "keyword.txt", 
                        "fileType": "text", 
                        "path": "/datax", 
                        "writeMode": "append"
                    }
                }
            }
        ], 
        "setting": {
            "speed": {
                "channel": "3"
            }
        }
    }
}

3. 运行Job

[xiaokang@hadoop json]$ /opt/software/datax/bin/datax.py ./mysql2hdfs.json

3.3 HDFS数据导出到MySQL

1. 将3.2中导入的文件重命名并在数据库创建表

[xiaokang@hadoop ~]$ hdfs dfs -mv /datax/keyword.txt__4c0e0d04_e503_437a_a1e3_49db49cbaaed /datax/keyword.txt

表必须预先创建,建表语句如下:

CREATE TABLE help_keyword_from_hdfs_datax LIKE help_keyword;

2. 查看官方json配置模板

[xiaokang@hadoop json]$ python /opt/software/datax/bin/datax.py -r hdfsreader -w mysqlwriter

DataX (DATAX-OPENSOURCE-3.0), From Alibaba !
Copyright (C) 2010-2017, Alibaba Group. All Rights Reserved.


Please refer to the hdfsreader document:
     https://github.com/alibaba/DataX/blob/master/hdfsreader/doc/hdfsreader.md 

Please refer to the mysqlwriter document:
     https://github.com/alibaba/DataX/blob/master/mysqlwriter/doc/mysqlwriter.md 
 
Please save the following configuration as a json file and  use
     python {DATAX_HOME}/bin/datax.py {JSON_FILE_NAME}.json 
to run the job.

{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "hdfsreader", 
                    "parameter": {
                        "column": [], 
                        "defaultFS": "", 
                        "encoding": "UTF-8", 
                        "fieldDelimiter": ",", 
                        "fileType": "orc", 
                        "path": ""
                    }
                }, 
                "writer": {
                    "name": "mysqlwriter", 
                    "parameter": {
                        "column": [], 
                        "connection": [
                            {
                                "jdbcUrl": "", 
                                "table": []
                            }
                        ], 
                        "password": "", 
                        "preSql": [], 
                        "session": [], 
                        "username": "", 
                        "writeMode": ""
                    }
                }
            }
        ], 
        "setting": {
            "speed": {
                "channel": ""
            }
        }
    }
}

3. 根据模板编写json文件

{
    "job": {
        "content": [
            {
                "reader": {
                    "name": "hdfsreader", 
                    "parameter": {
                        "column": [
							"*"
                        ], 
                        "defaultFS": "hdfs://hadoop:9000", 
                        "encoding": "UTF-8", 
                        "fieldDelimiter": "|", 
                        "fileType": "text", 
                        "path": "/datax/keyword.txt"
                    }
                }, 
                "writer": {
                    "name": "mysqlwriter", 
                    "parameter": {
                        "column": [
							"help_keyword_id",
							"name"
                        ], 
                        "connection": [
                            {
                                "jdbcUrl": "jdbc:mysql://192.168.1.106:3306/mysql", 
                                "table": ["help_keyword_from_hdfs_datax"]
                            }
                        ], 
                        "password": "xiaokang",  
                        "username": "root", 
                        "writeMode": "insert"
                    }
                }
            }
        ], 
        "setting": {
            "speed": {
                "channel": "3"
            }
        }
    }
}

3. 运行Job

[xiaokang@hadoop json]$ /opt/software/datax/bin/datax.py ./hdfs2mysql.json

你可能感兴趣的:(大数据)