纯C++版的Faster R-CNN(通过caffe自定义RPN层实现)

         这里介绍的是通过添加自定义层(RPN层)代替python层,实现c++版的Faster R-CNN,因为去掉python了,所以部署时不会因为牵扯到python库等其它的莫名其妙的错误,使用起来就跟单纯的caffe一样,更简单方便。 核心代码,借鉴的是这篇博客,这里的话,我们不扣具体的代码细节(比如rpn层是怎么产出候选框啊,非极大值抑制是具体怎么实现的等等),有兴趣的可以自己查下资料,所以主要是走一个步骤,从而完成c++版Faster R-CNN的配置。

http://blog.csdn.net/u010327085/article/details/54342070

        步入正题,步骤和上面那篇博客大致一样,但它有一些细节地方直接忽略了,代码也有几处小bug,所以我把具体的流程给说下。

      (1) 添加自定义层 rpn_layer.hpp  把它放在 caffe/include/caffe/layers/  目录下

#ifndef CAFFE_RPN_LAYER_HPP_
#define CAFFE_RPN_LAYER_HPP_

#include 

#include "caffe/blob.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"
//#include"opencv2/opencv.hpp"

#define mymax(a,b) ((a)>(b))?(a):(b)
#define mymin(a,b) ((a)>(b))?(b):(a)
namespace caffe {

	/**
	* @brief implement RPN layer for faster rcnn
	*/

	template 
	class RPNLayer : public Layer {
	public:
		explicit RPNLayer(const LayerParameter& param)
			: Layer(param) {
				m_score_.reset(new Blob());
				m_box_.reset(new Blob());
				local_anchors_.reset(new Blob());
			}
		virtual void LayerSetUp(const vector*>& bottom,
			const vector*>& top);
		virtual void Reshape(const vector*>& bottom,
			const vector*>& top){}
		virtual inline const char* type() const { return "RPN"; }

		struct abox{
			Dtype batch_ind;
			Dtype x1;
			Dtype y1;
			Dtype x2;
			Dtype y2;
			Dtype score;
			bool operator <(const abox&tmp) const{
				return score < tmp.score;
			}
		};

	protected:
		virtual void Forward_cpu(const vector*>& bottom,
			const vector*>& top);
		//virtual void Forward_gpu(const vector*>& bottom,
			//const vector*>& top);
		virtual void Backward_cpu(const vector*>& top,
			const vector& propagate_down, const vector*>& bottom){};

		
		int feat_stride_;
		int base_size_;
		int min_size_;
		int pre_nms_topN_;
		int post_nms_topN_;
		float nms_thresh_;
		vector anchor_scales_;
		vector ratios_;


		vector > gen_anchors_;
		int *anchors_;
		int anchors_nums_;
		int src_height_;
		int src_width_;
		float src_scale_;
		int map_width_;
		int map_height_;
		
		shared_ptr > m_score_;
		shared_ptr > m_box_;
		shared_ptr >local_anchors_;
		void generate_anchors();
		vector > ratio_enum(vector);
		vector whctrs(vector);
		vector mkanchor(float w,float h,float x_ctr,float y_ctr);
		vector > scale_enum(vector);
		
		//cv::Mat proposal_local_anchor(int width, int height);
		void proposal_local_anchor();
		void bbox_tranform_inv();
		cv::Mat bbox_tranform_inv(cv::Mat local_anchors, cv::Mat boxs_delta);
		void nms(std::vector &input_boxes, float nms_thresh);
		void filter_boxs(cv::Mat& pre_box, cv::Mat& score, vector& aboxes);
		void filter_boxs(vector& aboxes);
	};
}  // namespace caffe

#endif  // CAFFE_RPN_LAYER_HPP_
  然后是源文件 rpn_layer.cpp  放在 caffe/src/caffe/layers/  目录下

#include 
#include 

#include "caffe/layers/rpn_layer.hpp"
#include "caffe/util/math_functions.hpp"
#include 

int debug = 0;
int  tmp[9][4] = {
	{ -83, -39, 100, 56 },
	{ -175, -87, 192, 104 },
	{ -359, -183, 376, 200 },
	{ -55, -55, 72, 72 },
	{ -119, -119, 136, 136 },
	{ -247, -247, 264, 264 },
	{ -35, -79, 52, 96 },
	{ -79, -167, 96, 184 },
	{ -167, -343, 184, 360 }
};
namespace caffe {

	template 
	void RPNLayer::LayerSetUp(
		const vector*>& bottom, const vector*>& top) {
		anchor_scales_.clear();
		ratios_.clear();
		feat_stride_ = this->layer_param_.rpn_param().feat_stride();
		base_size_ = this->layer_param_.rpn_param().basesize();
		min_size_ = this->layer_param_.rpn_param().boxminsize();
		pre_nms_topN_ = this->layer_param_.rpn_param().per_nms_topn();
		post_nms_topN_ = this->layer_param_.rpn_param().post_nms_topn();
		nms_thresh_ = this->layer_param_.rpn_param().nms_thresh();
		int scales_num = this->layer_param_.rpn_param().scale_size();
		for (int i = 0; i < scales_num; ++i)
		{
			anchor_scales_.push_back(this->layer_param_.rpn_param().scale(i));
		}
		int ratios_num = this->layer_param_.rpn_param().ratio_size();
		for (int i = 0; i < ratios_num; ++i)
		{
			ratios_.push_back(this->layer_param_.rpn_param().ratio(i));
		}
		
		
		//anchors_nums_ = 9;
		//anchors_ = new int[anchors_nums_ * 4];
		//memcpy(anchors_, tmp, 9 * 4 * sizeof(int));
		
		generate_anchors();

		anchors_nums_ = gen_anchors_.size();
		anchors_ = new int[anchors_nums_ * 4];
		for (int i = 0; iReshape(1, 5, 1, 1);
		if (top.size() > 1)
		{
			top[1]->Reshape(1, 1, 1, 1);
		}
	}

	template 
	void RPNLayer::generate_anchors(){
		//generate base anchor
		vector base_anchor;
		base_anchor.push_back(0);
		base_anchor.push_back(0);
		base_anchor.push_back(base_size_ - 1);
		base_anchor.push_back(base_size_ - 1);
		//enum ratio anchors
		vector >ratio_anchors = ratio_enum(base_anchor);
		for (int i = 0; i < ratio_anchors.size(); ++i)
		{
			vector > tmp = scale_enum(ratio_anchors[i]);
			gen_anchors_.insert(gen_anchors_.end(), tmp.begin(), tmp.end());
		}
	}

	template 
	vector > RPNLayer::scale_enum(vector anchor){
		vector > result;
		vector reform_anchor = whctrs(anchor);
		float x_ctr = reform_anchor[2];
		float y_ctr = reform_anchor[3];
		float w = reform_anchor[0];
		float h = reform_anchor[1];
		for (int i = 0; i < anchor_scales_.size(); ++i)
		{
			float ws = w * anchor_scales_[i];
			float hs = h *  anchor_scales_[i];
			vector tmp = mkanchor(ws, hs, x_ctr, y_ctr);
			result.push_back(tmp);
		}
		return result;
	}


	template 
	vector > RPNLayer::ratio_enum(vector anchor){
		vector > result;
		vector reform_anchor = whctrs(anchor);
		float x_ctr = reform_anchor[2];
		float y_ctr = reform_anchor[3];
		float size = reform_anchor[0] * reform_anchor[1];
		for (int i = 0; i < ratios_.size(); ++i)
		{
			float size_ratios = size / ratios_[i];
			float ws = round(sqrt(size_ratios));
			float hs = round(ws*ratios_[i]);
			vector tmp = mkanchor(ws, hs, x_ctr, y_ctr);
			result.push_back(tmp);
		}
		return result;
	}

	template 
	vector RPNLayer::mkanchor(float w, float h, float x_ctr, float y_ctr){
		vector tmp;
		tmp.push_back(x_ctr - 0.5*(w - 1));
		tmp.push_back(y_ctr - 0.5*(h - 1));
		tmp.push_back(x_ctr + 0.5*(w - 1));
		tmp.push_back(y_ctr + 0.5*(h - 1));
		return tmp;
	}
	template 
	vector RPNLayer::whctrs(vector anchor){
		vector result;
		result.push_back(anchor[2] - anchor[0] + 1); //w
		result.push_back(anchor[3] - anchor[1] + 1); //h
		result.push_back((anchor[2] + anchor[0]) / 2); //ctrx
		result.push_back((anchor[3] + anchor[1]) / 2); //ctry
		return result;
	}
	

	/*template 
	cv::Mat RPNLayer::proposal_local_anchor(int width, int height)
	{
		Blob shift;
		cv::Mat shitf_x(height, width, CV_32SC1);
		cv::Mat shitf_y(height, width, CV_32SC1);
		for (size_t i = 0; i < width; i++)
		{
			for (size_t j = 0; j < height; j++)
			{
				shitf_x.at(j, i) = i * feat_stride_;
				shitf_y.at(j, i) = j * feat_stride_;
			}
		}
		shift.Reshape(anchors_nums_, width*height, 4,  1);
		float *p = shift.mutable_cpu_diff(), *a = shift.mutable_cpu_data();
		for (int i = 0; i < height*width; i++)
		{
			for (int j = 0; j < anchors_nums_; j++)
			{
				size_t num = i * 4 + j * 4 * height*width;
				p[num + 0] = -shitf_x.at(i / shitf_x.cols, i % shitf_x.cols);
				p[num + 2] = -shitf_x.at(i / shitf_x.cols, i % shitf_x.cols);
				p[num + 1] = -shitf_y.at(i / shitf_y.cols, i % shitf_y.cols);
				p[num + 3] = -shitf_y.at(i / shitf_y.cols, i % shitf_y.cols);
				a[num + 0] = anchors_[j * 4 + 0];
				a[num + 1] = anchors_[j * 4 + 1];
				a[num + 2] = anchors_[j * 4 + 2];
				a[num + 3] = anchors_[j * 4 + 3];
			}
		}
		shift.Update();
		cv::Mat loacl_anchors(anchors_nums_ * height*width, 4, CV_32FC1);
		size_t num = 0;
		for (int i = 0; i < height; ++i)
		{
			for (int j = 0; j < width; ++j)
			{
				for (int c = 0; c < anchors_nums_; ++c)
				{
					for (int k = 0; k < 4; ++k)
					{
						loacl_anchors.at((i*width + j)*anchors_nums_+c, k)= shift.data_at(c, i*width + j, k, 0);
					}
				}
			}
		}
		return loacl_anchors;
	}*/

	template 
	void RPNLayer::proposal_local_anchor(){
		int length = mymax(map_width_, map_height_);
		int step = map_width_*map_height_;
		int *map_m = new int[length];
		for (int i = 0; i < length; ++i)
		{
			map_m[i] = i*feat_stride_;
		}
		Dtype *shift_x = new Dtype[step];
		Dtype *shift_y = new Dtype[step];
		for (int i = 0; i < map_height_; ++i)
		{
			for (int j = 0; j < map_width_; ++j)
			{
				shift_x[i*map_width_ + j] = map_m[j];
				shift_y[i*map_width_ + j] = map_m[i];
			}
		}
		local_anchors_->Reshape(1, anchors_nums_ * 4, map_height_, map_width_);
		Dtype *a = local_anchors_->mutable_cpu_data();
		for (int i = 0; i < anchors_nums_; ++i)
		{
			caffe_set(step, Dtype(anchors_[i * 4 + 0]), a + (i * 4 + 0) *step);
			caffe_set(step, Dtype(anchors_[i * 4 + 1]), a + (i * 4 + 1) *step);
			caffe_set(step, Dtype(anchors_[i * 4 + 2]), a + (i * 4 + 2) *step);
			caffe_set(step, Dtype(anchors_[i * 4 + 3]), a + (i * 4 + 3) *step);
			caffe_axpy(step, Dtype(1), shift_x, a + (i * 4 + 0)*step);
			caffe_axpy(step, Dtype(1), shift_x, a + (i * 4 + 2)*step);
			caffe_axpy(step, Dtype(1), shift_y, a + (i * 4 + 1)*step);
			caffe_axpy(step, Dtype(1), shift_y, a + (i * 4 + 3)*step);
		}
	}

	template
	void RPNLayer::filter_boxs(cv::Mat& pre_box, cv::Mat& score, vector& aboxes)
	{
		float localMinSize=min_size_*src_scale_;
		aboxes.clear();
		
		for (int i = 0; i < pre_box.rows; i++)
		{
			int widths = pre_box.at(i, 2) - pre_box.at(i, 0) + 1;
			int heights = pre_box.at(i, 3) - pre_box.at(i, 1) + 1;
			if (widths >= localMinSize || heights >= localMinSize)
			{
				abox tmp;
				tmp.x1 = pre_box.at(i, 0);
				tmp.y1 = pre_box.at(i, 1);
				tmp.x2 = pre_box.at(i, 2);
				tmp.y2 = pre_box.at(i, 3);
				tmp.score = score.at(i, 0);
				aboxes.push_back(tmp);
			}
		}
	}

	template
	void RPNLayer::filter_boxs(vector& aboxes)
	{
		float localMinSize = min_size_*src_scale_;
		aboxes.clear();
		int map_width = m_box_->width();
		int map_height = m_box_->height();
		int map_channel = m_box_->channels();
		const Dtype *box = m_box_->cpu_data();
		const Dtype *score = m_score_->cpu_data();

		int step = 4 * map_height*map_width;
		int one_step = map_height*map_width;
		int offset_w, offset_h, offset_x, offset_y, offset_s;

		for (int h = 0; h < map_height; ++h)
		{
			for (int w = 0; w < map_width; ++w)
			{
				offset_x = h*map_width + w;
				offset_y = offset_x + one_step;
				offset_w = offset_y + one_step;
				offset_h = offset_w + one_step;
				offset_s = one_step*anchors_nums_+h*map_width + w;
				for (int c = 0; c < map_channel / 4; ++c)
				{
					Dtype width = box[offset_w], height = box[offset_h];
					if (width < localMinSize || height < localMinSize)
					{
					}
					else
					{
						abox tmp;
						tmp.batch_ind = 0;
						tmp.x1 = box[offset_x] - 0.5*width;
						tmp.y1 = box[offset_y] - 0.5*height;
						tmp.x2 = box[offset_x] + 0.5*width;
						tmp.y2 = box[offset_y] + 0.5*height;
						tmp.x1 = mymin(mymax(tmp.x1, 0), src_width_);
						tmp.y1 = mymin(mymax(tmp.y1, 0), src_height_);
						tmp.x2 = mymin(mymax(tmp.x2, 0), src_width_);
						tmp.y2 = mymin(mymax(tmp.y2, 0), src_height_);
						tmp.score = score[offset_s];
						aboxes.push_back(tmp);
					}
					offset_x += step;
					offset_y += step;
					offset_w += step;
					offset_h += step;
					offset_s += one_step;
				}
			}
		}
	}

	template
	void RPNLayer::bbox_tranform_inv(){
		int channel = m_box_->channels();
		int height = m_box_->height();
		int width = m_box_->width();
		int step = height*width;
		Dtype * a = m_box_->mutable_cpu_data();
		Dtype * b = local_anchors_->mutable_cpu_data();
		for (int i = 0; i < channel / 4; ++i)
		{
			caffe_axpy(2*step, Dtype(-1), b + (i * 4 + 0)*step, b + (i * 4 + 2)*step);
			caffe_add_scalar(2 * step, Dtype(1), b + (i * 4 + 2)*step);
			caffe_axpy(2*step, Dtype(0.5), b + (i * 4 + 2)*step, b + (i * 4 + 0)*step);
			
			caffe_mul(2 * step, b + (i * 4 + 2)*step, a + (i * 4 + 0)*step, a + (i * 4 + 0)*step);
			caffe_add(2 * step, b + (i * 4 + 0)*step, a + (i * 4 + 0)*step, a + (i * 4 + 0)*step);

			caffe_exp(2*step, a + (i * 4 + 2)*step, a + (i * 4 + 2)*step);
			caffe_mul(2 * step, b + (i * 4 + 2)*step, a + (i * 4 + 2)*step, a + (i * 4 + 2)*step);
		}
	}


	

	template
	void RPNLayer::nms(std::vector &input_boxes, float nms_thresh){
		std::vectorvArea(input_boxes.size());
		for (int i = 0; i < input_boxes.size(); ++i)
		{
			vArea[i] = (input_boxes.at(i).x2 - input_boxes.at(i).x1 + 1)
				* (input_boxes.at(i).y2 - input_boxes.at(i).y1 + 1);
		}
		for (int i = 0; i < input_boxes.size(); ++i)
		{
			for (int j = i + 1; j < input_boxes.size();)
			{
				float xx1 = std::max(input_boxes[i].x1, input_boxes[j].x1);
				float yy1 = std::max(input_boxes[i].y1, input_boxes[j].y1);
				float xx2 = std::min(input_boxes[i].x2, input_boxes[j].x2);
				float yy2 = std::min(input_boxes[i].y2, input_boxes[j].y2);
				float w = std::max(float(0), xx2 - xx1 + 1);
				float	h = std::max(float(0), yy2 - yy1 + 1);
				float	inter = w * h;
				float ovr = inter / (vArea[i] + vArea[j] - inter);
				if (ovr >= nms_thresh)
				{
					input_boxes.erase(input_boxes.begin() + j);
					vArea.erase(vArea.begin() + j);
				}
				else
				{
					j++;
				}
			}
		}
	}

	template 
	void RPNLayer::Forward_cpu(
		const vector*>& bottom,
		const vector*>& top) {
		
		map_width_ = bottom[1]->width();
		map_height_ = bottom[1]->height();
		//int channels = bottom[1]->channels();
		
		
		//get boxs_delta,向右。
		m_box_->CopyFrom(*(bottom[1]), false, true);
		/*cv::Mat boxs_delta(height*width*anchors_nums_, 4, CV_32FC1);
		for (int i = 0; i < height; ++i)
		{
			for (int j = 0; j < width; ++j)
			{
				for (int k = 0; k < anchors_nums_; ++k)
				{
					for (int c = 0; c < 4; ++c)
					{
						boxs_delta.at((i*width + j)*anchors_nums_ + k, c) = bottom[1]->data_at(0, k*4 + c, i, j);
					}
				}
			}
		}*/

		

		//get sores 向右,前面anchors_nums_个位bg的得分,后面anchors_nums_为fg得分,我们需要的是后面的。
		m_score_->CopyFrom(*(bottom[0]),false,true);
		
		/*cv::Mat scores(height*width*anchors_nums_, 1, CV_32FC1);
		for (int i = 0; i < height; ++i)
		{
			for (int j = 0; j < width; ++j)
			{
				for (int k = 0; k < anchors_nums_; ++k)
				{
					scores.at((i*width + j)*anchors_nums_+k, 0) = bottom[0]->data_at(0, k + anchors_nums_, i, j);
				}
			}
		}*/

		//get im_info

		src_height_ = bottom[2]->data_at(0, 0,0,0);
		src_width_ = bottom[2]->data_at(0, 1,0,0);
		src_scale_ = bottom[2]->data_at(0, 2, 0, 0);

		//gen local anchors 向右
		
		proposal_local_anchor();
		//cv::Mat local_anchors = proposal_local_anchor(width, height);
		

		//Convert anchors into proposals via bbox transformations
		
		bbox_tranform_inv();
		
		/*for (int i = 0; i < pre_box.rows; ++i)
		{
			if (pre_box.at(i, 0) < 0)	pre_box.at(i, 0) = 0;
			if (pre_box.at(i, 0) > (src_width_ - 1))	pre_box.at(i, 0) = src_width_ - 1;
			if (pre_box.at(i, 2) < 0)	pre_box.at(i, 2) = 0;
			if (pre_box.at(i, 2) > (src_width_ - 1))	pre_box.at(i, 2) = src_width_ - 1;

			if (pre_box.at(i, 1) < 0)	pre_box.at(i, 1) = 0;
			if (pre_box.at(i, 1) > (src_height_ - 1))	pre_box.at(i, 1) = src_height_ - 1;
			if (pre_box.at(i, 3) < 0)	pre_box.at(i, 3) = 0;
			if (pre_box.at(i, 3) > (src_height_ - 1))	pre_box.at(i, 3) = src_height_ - 1;
		}*/
		vectoraboxes;
		
		filter_boxs(aboxes);
		
		//clock_t start, end;
		//start = clock();
		std::sort(aboxes.rbegin(), aboxes.rend()); //降序
		if (pre_nms_topN_ > 0)
		{
			int tmp = mymin(pre_nms_topN_, aboxes.size());
			aboxes.erase(aboxes.begin() + tmp, aboxes.end());
		}
		
		nms(aboxes,nms_thresh_);
		//end = clock();
		//std::cout << "sort nms:" << (double)(end - start) / CLOCKS_PER_SEC << std::endl;
		if (post_nms_topN_ > 0)
		{
			int tmp = mymin(post_nms_topN_, aboxes.size());
			aboxes.erase(aboxes.begin() + tmp, aboxes.end());
		}
		top[0]->Reshape(aboxes.size(),5,1,1);
		Dtype *top0 = top[0]->mutable_cpu_data();
		for (int i = 0; i < aboxes.size(); ++i)
		{
			//caffe_copy(aboxes.size() * 5, (Dtype*)aboxes.data(), top0);
			top0[0] = aboxes[i].batch_ind;
			top0[1] = aboxes[i].x1;
			top0[2] = aboxes[i].y1; 
			top0[3] = aboxes[i].x2;
			top0[4] = aboxes[i].y2;
			top0 += top[0]->offset(1);
		}
		if (top.size()>1)
		{
			top[1]->Reshape(aboxes.size(), 1,1,1);
			Dtype *top1 = top[1]->mutable_cpu_data();
			for (int i = 0; i < aboxes.size(); ++i)
			{
				top1[0] = aboxes[i].score;
				top1 += top[1]->offset(1);
			}
		}	
	}

#ifdef CPU_ONLY
		STUB_GPU(RPNLayer);
#endif

	INSTANTIATE_CLASS(RPNLayer);
	REGISTER_LAYER_CLASS(RPN);

}  // namespace caffe

(2) 添加自定义层 roi_pooling_layer.hpp  把它放在 caffe/include/caffe/layers/  目录下

#ifndef CAFFE_ROI_POOLING_LAYER_HPP_
#define CAFFE_ROI_POOLING_LAYER_HPP_

#include 

#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"

namespace caffe {

/** 
 * @brief Perform max pooling on regions of interest specified by input, takes
 *        as input N feature maps and a list of R regions of interest.
 *
 *   ROIPoolingLayer takes 2 inputs and produces 1 output. bottom[0] is
 *   [N x C x H x W] feature maps on which pooling is performed. bottom[1] is
 *   [R x 5] containing a list R ROI tuples with batch index and coordinates of
 *   regions of interest. Each row in bottom[1] is a ROI tuple in format
 *   [batch_index x1 y1 x2 y2], where batch_index corresponds to the index of
 *   instance in the first input and x1 y1 x2 y2 are 0-indexed coordinates
 *   of ROI rectangle (including its boundaries).
 *
 *   For each of the R ROIs, max-pooling is performed over pooled_h x pooled_w
 *   output bins (specified in roi_pooling_param). The pooling bin sizes are
 *   adaptively set such that they tile ROI rectangle in the indexed feature
 *   map. The pooling region of vertical bin ph in [0, pooled_h) is computed as
 *
 *    start_ph (included) = y1 + floor(ph * (y2 - y1 + 1) / pooled_h)
 *    end_ph (excluded)   = y1 + ceil((ph + 1) * (y2 - y1 + 1) / pooled_h)
 *
 *   and similar horizontal bins.
 *
 * @param param provides ROIPoolingParameter roi_pooling_param,
 *        with ROIPoolingLayer options:
 *  - pooled_h. The pooled output height.
 *  - pooled_w. The pooled output width
 *  - spatial_scale. Multiplicative spatial scale factor to translate ROI
 *  coordinates from their input scale to the scale used when pooling.
 *
 * Fast R-CNN
 * Written by Ross Girshick
 */

template 
class ROIPoolingLayer : public Layer {
 public:
  explicit ROIPoolingLayer(const LayerParameter& param)
      : Layer(param) {}
  virtual void LayerSetUp(const vector*>& bottom,
      const vector*>& top);
  virtual void Reshape(const vector*>& bottom,
      const vector*>& top);

  virtual inline const char* type() const { return "ROIPooling"; }

  virtual inline int MinBottomBlobs() const { return 2; }
  virtual inline int MaxBottomBlobs() const { return 2; }
  virtual inline int MinTopBlobs() const { return 1; }
  virtual inline int MaxTopBlobs() const { return 1; }

 protected:
  virtual void Forward_cpu(const vector*>& bottom,
      const vector*>& top);
  virtual void Forward_gpu(const vector*>& bottom,
      const vector*>& top);
  virtual void Backward_cpu(const vector*>& top,
      const vector& propagate_down, const vector*>& bottom);
  virtual void Backward_gpu(const vector*>& top,
      const vector& propagate_down, const vector*>& bottom);

  int channels_;
  int height_;
  int width_;
  int pooled_height_;
  int pooled_width_;
  Dtype spatial_scale_;
  Blob max_idx_;
};

}  // namespace caffe

#endif  // CAFFE_ROI_POOLING_LAYER_HPP_
  然后是源文件 roi_pooling_layer.cpp 以及cuda版的roi_pooling_layer.cu  放在 caffe/src/caffe/layers/  目录下
#include 
#include 
#include 

#include "caffe/layers/roi_pooling_layer.hpp"

using std::max;
using std::min;
using std::floor;
using std::ceil;

namespace caffe {

template 
void ROIPoolingLayer::LayerSetUp(const vector*>& bottom,
      const vector*>& top) {
  ROIPoolingParameter roi_pool_param = this->layer_param_.roi_pooling_param();
  CHECK_GT(roi_pool_param.pooled_h(), 0)
      << "pooled_h must be > 0";
  CHECK_GT(roi_pool_param.pooled_w(), 0)
      << "pooled_w must be > 0";
  pooled_height_ = roi_pool_param.pooled_h();
  pooled_width_ = roi_pool_param.pooled_w();
  spatial_scale_ = roi_pool_param.spatial_scale();
  LOG(INFO) << "Spatial scale: " << spatial_scale_;
}

template 
void ROIPoolingLayer::Reshape(const vector*>& bottom,
      const vector*>& top) {
  channels_ = bottom[0]->channels();
  height_ = bottom[0]->height();
  width_ = bottom[0]->width();
  top[0]->Reshape(bottom[1]->num(), channels_, pooled_height_,
      pooled_width_);
  max_idx_.Reshape(bottom[1]->num(), channels_, pooled_height_,
      pooled_width_);
}

template 
void ROIPoolingLayer::Forward_cpu(const vector*>& bottom,
      const vector*>& top) {
  const Dtype* bottom_data = bottom[0]->cpu_data();
  const Dtype* bottom_rois = bottom[1]->cpu_data();
  // Number of ROIs
  int num_rois = bottom[1]->num();
  int batch_size = bottom[0]->num();
  int top_count = top[0]->count();
  Dtype* top_data = top[0]->mutable_cpu_data();
  caffe_set(top_count, Dtype(-FLT_MAX), top_data);
  int* argmax_data = max_idx_.mutable_cpu_data();
  caffe_set(top_count, -1, argmax_data);

  // For each ROI R = [batch_index x1 y1 x2 y2]: max pool over R
  for (int n = 0; n < num_rois; ++n) {
    int roi_batch_ind = bottom_rois[0];
    int roi_start_w = round(bottom_rois[1] * spatial_scale_);
    int roi_start_h = round(bottom_rois[2] * spatial_scale_);
    int roi_end_w = round(bottom_rois[3] * spatial_scale_);
    int roi_end_h = round(bottom_rois[4] * spatial_scale_);
    CHECK_GE(roi_batch_ind, 0);
    CHECK_LT(roi_batch_ind, batch_size);

    int roi_height = max(roi_end_h - roi_start_h + 1, 1);
    int roi_width = max(roi_end_w - roi_start_w + 1, 1);
    const Dtype bin_size_h = static_cast(roi_height)
                             / static_cast(pooled_height_);
    const Dtype bin_size_w = static_cast(roi_width)
                             / static_cast(pooled_width_);

    const Dtype* batch_data = bottom_data + bottom[0]->offset(roi_batch_ind);

    for (int c = 0; c < channels_; ++c) {
      for (int ph = 0; ph < pooled_height_; ++ph) {
        for (int pw = 0; pw < pooled_width_; ++pw) {
          // Compute pooling region for this output unit:
          //  start (included) = floor(ph * roi_height / pooled_height_)
          //  end (excluded) = ceil((ph + 1) * roi_height / pooled_height_)
          int hstart = static_cast(floor(static_cast(ph)
                                              * bin_size_h));
          int wstart = static_cast(floor(static_cast(pw)
                                              * bin_size_w));
          int hend = static_cast(ceil(static_cast(ph + 1)
                                           * bin_size_h));
          int wend = static_cast(ceil(static_cast(pw + 1)
                                           * bin_size_w));

          hstart = min(max(hstart + roi_start_h, 0), height_);
          hend = min(max(hend + roi_start_h, 0), height_);
          wstart = min(max(wstart + roi_start_w, 0), width_);
          wend = min(max(wend + roi_start_w, 0), width_);

          bool is_empty = (hend <= hstart) || (wend <= wstart);

          const int pool_index = ph * pooled_width_ + pw;
          if (is_empty) {
            top_data[pool_index] = 0;
            argmax_data[pool_index] = -1;
          }

          for (int h = hstart; h < hend; ++h) {
            for (int w = wstart; w < wend; ++w) {
              const int index = h * width_ + w;
              if (batch_data[index] > top_data[pool_index]) {
                top_data[pool_index] = batch_data[index];
                argmax_data[pool_index] = index;
              }
            }
          }
        }
      }
      // Increment all data pointers by one channel
      batch_data += bottom[0]->offset(0, 1);
      top_data += top[0]->offset(0, 1);
      argmax_data += max_idx_.offset(0, 1);
    }
    // Increment ROI data pointer
    bottom_rois += bottom[1]->offset(1);
  }
}

template 
void ROIPoolingLayer::Backward_cpu(const vector*>& top,
      const vector& propagate_down, const vector*>& bottom) {
  if (propagate_down[1]) {
    LOG(FATAL) << this->type()
               << " Layer cannot backpropagate to roi inputs.";
  }
  if (!propagate_down[0]) {
    return;
  }
  const Dtype* bottom_rois = bottom[1]->cpu_data();
  const Dtype* top_diff = top[0]->cpu_diff();
  Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
  caffe_set(bottom[0]->count(), Dtype(0.), bottom_diff);
  const int* argmax_data = max_idx_.cpu_data();
  const int num_rois = top[0]->num();

  // Accumulate gradient over all ROIs
  for (int roi_n = 0; roi_n < num_rois; ++roi_n) {
    int roi_batch_ind = bottom_rois[roi_n * 5];
    // Accumulate gradients over each bin in this ROI
    for (int c = 0; c < channels_; ++c) {
      for (int ph = 0; ph < pooled_height_; ++ph) {
        for (int pw = 0; pw < pooled_width_; ++pw) {
          int offset_top = ((roi_n * channels_ + c) * pooled_height_ + ph)
              * pooled_width_ + pw;
          int argmax_index = argmax_data[offset_top];
          if (argmax_index >= 0) {
            int offset_bottom = (roi_batch_ind * channels_ + c) * height_
                * width_ + argmax_index;
            bottom_diff[offset_bottom] += top_diff[offset_top];
          }
        }
      }
    }
  }
}


#ifdef CPU_ONLY
STUB_GPU(ROIPoolingLayer);
#endif

INSTANTIATE_CLASS(ROIPoolingLayer);
REGISTER_LAYER_CLASS(ROIPooling);

}  // namespace caffe
  

#include 
#include 
#include 

#include "caffe/layers/roi_pooling_layer.hpp"


using std::max;
using std::min;

namespace caffe {

template 
__global__ void ROIPoolForward(const int nthreads, const Dtype* bottom_data,
    const Dtype spatial_scale, const int channels, const int height,
    const int width, const int pooled_height, const int pooled_width,
    const Dtype* bottom_rois, Dtype* top_data, int* argmax_data) {
  CUDA_KERNEL_LOOP(index, nthreads) {
    // (n, c, ph, pw) is an element in the pooled output
    int pw = index % pooled_width;
    int ph = (index / pooled_width) % pooled_height;
    int c = (index / pooled_width / pooled_height) % channels;
    int n = index / pooled_width / pooled_height / channels;

    bottom_rois += n * 5;
    int roi_batch_ind = bottom_rois[0];
    int roi_start_w = round(bottom_rois[1] * spatial_scale);
    int roi_start_h = round(bottom_rois[2] * spatial_scale);
    int roi_end_w = round(bottom_rois[3] * spatial_scale);
    int roi_end_h = round(bottom_rois[4] * spatial_scale);

    // Force malformed ROIs to be 1x1
    int roi_width = max(roi_end_w - roi_start_w + 1, 1);
    int roi_height = max(roi_end_h - roi_start_h + 1, 1);
    Dtype bin_size_h = static_cast(roi_height)
                       / static_cast(pooled_height);
    Dtype bin_size_w = static_cast(roi_width)
                       / static_cast(pooled_width);

    int hstart = static_cast(floor(static_cast(ph)
                                        * bin_size_h));
    int wstart = static_cast(floor(static_cast(pw)
                                        * bin_size_w));
    int hend = static_cast(ceil(static_cast(ph + 1)
                                     * bin_size_h));
    int wend = static_cast(ceil(static_cast(pw + 1)
                                     * bin_size_w));

    // Add roi offsets and clip to input boundaries
    hstart = min(max(hstart + roi_start_h, 0), height);
    hend = min(max(hend + roi_start_h, 0), height);
    wstart = min(max(wstart + roi_start_w, 0), width);
    wend = min(max(wend + roi_start_w, 0), width);
    bool is_empty = (hend <= hstart) || (wend <= wstart);

    // Define an empty pooling region to be zero
    Dtype maxval = is_empty ? 0 : -FLT_MAX;
    // If nothing is pooled, argmax = -1 causes nothing to be backprop'd
    int maxidx = -1;
    bottom_data += (roi_batch_ind * channels + c) * height * width;
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
        int bottom_index = h * width + w;
        if (bottom_data[bottom_index] > maxval) {
          maxval = bottom_data[bottom_index];
          maxidx = bottom_index;
        }
      }
    }
    top_data[index] = maxval;
    argmax_data[index] = maxidx;
  }
}

template 
void ROIPoolingLayer::Forward_gpu(const vector*>& bottom,
      const vector*>& top) {
  const Dtype* bottom_data = bottom[0]->gpu_data();
  const Dtype* bottom_rois = bottom[1]->gpu_data();
  Dtype* top_data = top[0]->mutable_gpu_data();
  int* argmax_data = max_idx_.mutable_gpu_data();
  int count = top[0]->count();
  // NOLINT_NEXT_LINE(whitespace/operators)
  ROIPoolForward<<>>(
      count, bottom_data, spatial_scale_, channels_, height_, width_,
      pooled_height_, pooled_width_, bottom_rois, top_data, argmax_data);
  CUDA_POST_KERNEL_CHECK;
}

template 
__global__ void ROIPoolBackward(const int nthreads, const Dtype* top_diff,
    const int* argmax_data, const int num_rois, const Dtype spatial_scale,
    const int channels, const int height, const int width,
    const int pooled_height, const int pooled_width, Dtype* bottom_diff,
    const Dtype* bottom_rois) {
  CUDA_KERNEL_LOOP(index, nthreads) {
    // (n, c, h, w) coords in bottom data
    int w = index % width;
    int h = (index / width) % height;
    int c = (index / width / height) % channels;
    int n = index / width / height / channels;

    Dtype gradient = 0;
    // Accumulate gradient over all ROIs that pooled this element
    for (int roi_n = 0; roi_n < num_rois; ++roi_n) {
      const Dtype* offset_bottom_rois = bottom_rois + roi_n * 5;
      int roi_batch_ind = offset_bottom_rois[0];
      // Skip if ROI's batch index doesn't match n
      if (n != roi_batch_ind) {
        continue;
      }

      int roi_start_w = round(offset_bottom_rois[1] * spatial_scale);
      int roi_start_h = round(offset_bottom_rois[2] * spatial_scale);
      int roi_end_w = round(offset_bottom_rois[3] * spatial_scale);
      int roi_end_h = round(offset_bottom_rois[4] * spatial_scale);

      // Skip if ROI doesn't include (h, w)
      const bool in_roi = (w >= roi_start_w && w <= roi_end_w &&
                           h >= roi_start_h && h <= roi_end_h);
      if (!in_roi) {
        continue;
      }

      int offset = (roi_n * channels + c) * pooled_height * pooled_width;
      const Dtype* offset_top_diff = top_diff + offset;
      const int* offset_argmax_data = argmax_data + offset;

      // Compute feasible set of pooled units that could have pooled
      // this bottom unit

      // Force malformed ROIs to be 1x1
      int roi_width = max(roi_end_w - roi_start_w + 1, 1);
      int roi_height = max(roi_end_h - roi_start_h + 1, 1);

      Dtype bin_size_h = static_cast(roi_height)
                         / static_cast(pooled_height);
      Dtype bin_size_w = static_cast(roi_width)
                         / static_cast(pooled_width);

      int phstart = floor(static_cast(h - roi_start_h) / bin_size_h);
      int phend = ceil(static_cast(h - roi_start_h + 1) / bin_size_h);
      int pwstart = floor(static_cast(w - roi_start_w) / bin_size_w);
      int pwend = ceil(static_cast(w - roi_start_w + 1) / bin_size_w);

      phstart = min(max(phstart, 0), pooled_height);
      phend = min(max(phend, 0), pooled_height);
      pwstart = min(max(pwstart, 0), pooled_width);
      pwend = min(max(pwend, 0), pooled_width);

      for (int ph = phstart; ph < phend; ++ph) {
        for (int pw = pwstart; pw < pwend; ++pw) {
          if (offset_argmax_data[ph * pooled_width + pw] == (h * width + w)) {
            gradient += offset_top_diff[ph * pooled_width + pw];
          }
        }
      }
    }
    bottom_diff[index] = gradient;
  }
}

template 
void ROIPoolingLayer::Backward_gpu(const vector*>& top,
      const vector& propagate_down, const vector*>& bottom) {
  if (!propagate_down[0]) {
    return;
  }
  const Dtype* bottom_rois = bottom[1]->gpu_data();
  const Dtype* top_diff = top[0]->gpu_diff();
  Dtype* bottom_diff = bottom[0]->mutable_gpu_diff();
  const int count = bottom[0]->count();
  caffe_gpu_set(count, Dtype(0.), bottom_diff);
  const int* argmax_data = max_idx_.gpu_data();
  // NOLINT_NEXT_LINE(whitespace/operators)
  ROIPoolBackward<<>>(
      count, top_diff, argmax_data, top[0]->num(), spatial_scale_, channels_,
      height_, width_, pooled_height_, pooled_width_, bottom_diff, bottom_rois);
  CUDA_POST_KERNEL_CHECK;
}

INSTANTIATE_LAYER_GPU_FUNCS(ROIPoolingLayer);

}  // namespace caffe

(3) 好了,代码添加完毕,现在在caffe/src/caffe/proto/caffe.proto 中声明这两个类

根据你自己的可用ID 在message Layer中添加这两个类,我的已经添加了,大概是这样的,千万记住大小写!

// NOTE
// Update the next available ID when you add a new LayerParameter field.
// LayerParameter next available layer-specific ID: 152 (last added: rpn_param roi_pooling_param)
optional RPNParameter rpn_param = 150;                  //  
optional ROIPoolingParameter roi_pooling_param = 151;       // roi pooling  Faster-Rcnn
这里写好后,因为这两个层都有内置的参数,还得在这个文件的最末尾,定义具体的参数

message ROIPoolingParameter {
  optional uint32 pooled_h = 1 [default = 0];
  optional uint32 pooled_w = 2 [default = 0];
  optional float spatial_scale = 3 [default = 1];
}
message RPNParameter {
  optional uint32 feat_stride = 1;
  optional uint32 basesize = 2;
  repeated uint32 scale = 3;
  repeated float ratio = 4;
  optional uint32 boxminsize =5;
  optional uint32 per_nms_topn = 9;
  optional uint32 post_nms_topn = 11;
  optional float nms_thresh = 8;
}

(4) 因为自定义层使用了RPN层,为了以后程序中各处都能使用该层,所以得在common.hpp和common.cpp文件的最末尾,添加对应的代码,注意这里的namespace RPN是和namespace caffe同一级的

头文件common.hpp里添加

namespace RPN{
    struct abox
    {
        float x1;
        float y1;
        float x2;
        float y2;
        float score;
        bool operator <(const abox&tmp) const{
            return score < tmp.score;
        }
   };
    void nms(std::vector& input_boxes,float nms_thresh);
    cv::Mat bbox_tranform_inv(cv::Mat, cv::Mat);
} // namespace RPN

源文件common.cpp里,为了防止说找不到cv::Mat类型的错误,添加opencv头文件

 #include

using namespace cv;


namespace RPN{
	cv::Mat bbox_tranform_inv(cv::Mat local_anchors, cv::Mat boxs_delta){
		cv::Mat pre_box(local_anchors.rows, local_anchors.cols, CV_32FC1);
		for (int i = 0; i < local_anchors.rows; i++)
		{
			double pred_ctr_x, pred_ctr_y, src_ctr_x, src_ctr_y;
			double dst_ctr_x, dst_ctr_y, dst_scl_x, dst_scl_y;
			double src_w, src_h, pred_w, pred_h;
			src_w = local_anchors.at(i, 2) - local_anchors.at(i, 0) + 1;
			src_h = local_anchors.at(i, 3) - local_anchors.at(i, 1) + 1;
			src_ctr_x = local_anchors.at(i, 0) + 0.5 * src_w;
			src_ctr_y = local_anchors.at(i, 1) + 0.5 * src_h;

			dst_ctr_x = boxs_delta.at(i, 0);
			dst_ctr_y = boxs_delta.at(i, 1);
			dst_scl_x = boxs_delta.at(i, 2);
			dst_scl_y = boxs_delta.at(i, 3);
			pred_ctr_x = dst_ctr_x*src_w + src_ctr_x;
			pred_ctr_y = dst_ctr_y*src_h + src_ctr_y;
			pred_w = exp(dst_scl_x) * src_w;
			pred_h = exp(dst_scl_y) * src_h;

			pre_box.at(i, 0) = pred_ctr_x - 0.5*pred_w;
			pre_box.at(i, 1) = pred_ctr_y - 0.5*pred_h;
			pre_box.at(i, 2) = pred_ctr_x + 0.5*pred_w;
			pre_box.at(i, 3) = pred_ctr_y + 0.5*pred_h;
		}
		return pre_box;
	}
	void nms(std::vector &input_boxes, float nms_thresh){
		std::vectorvArea(input_boxes.size());
		for (int i = 0; i < input_boxes.size(); ++i)
		{
			vArea[i] = (input_boxes.at(i).x2 - input_boxes.at(i).x1 + 1)
				* (input_boxes.at(i).y2 - input_boxes.at(i).y1 + 1);
		}
		for (int i = 0; i < input_boxes.size(); ++i)
		{
			for (int j = i + 1; j < input_boxes.size();)
			{
				float xx1 = std::max(input_boxes[i].x1, input_boxes[j].x1);
				float yy1 = std::max(input_boxes[i].y1, input_boxes[j].y1);
				float xx2 = std::min(input_boxes[i].x2, input_boxes[j].x2);
				float yy2 = std::min(input_boxes[i].y2, input_boxes[j].y2);
				float w = std::max(float(0), xx2 - xx1 + 1);
				float   h = std::max(float(0), yy2 - yy1 + 1);
				float   inter = w * h;
				float ovr = inter / (vArea[i] + vArea[j] - inter);
				if (ovr >= nms_thresh)
				{
					input_boxes.erase(input_boxes.begin() + j);
					vArea.erase(vArea.begin() + j);
				}
				else
				{
					j++;
				}
			}
		}
	}
}

(5)好了,配置弄完了,回到caffe根目录下,

make clean

make all -j

开始编译吧!

可能会出现什么找不到pb.h文件什么的,那就继续执行 make -j5  可能是因为编译的线程太多导致先后顺序什么的。 我也是猜的,反正我是这么解决的。


(6)环境已经配置好了,现在我们再加个类,用来对图片进行检测吧!编写头文件ObjectDetector.hpp

#ifndef OBJECTDETECTOR_H
#define OBJECTDETECTOR_H

#define INPUT_SIZE_NARROW  600
#define INPUT_SIZE_LONG  1000

#include 
#include 
#include 
#include 
#include 
#include 
#include 

using namespace std;

class ObjectDetector
{
public:

      ObjectDetector(const std::string &model_file, const std::string &weights_file);  //构造函数
	//对一张图片,进行检测,将结果保存进map数据结构里,分别表示每个类别对应的目标框,如果需要分数信息,则计算分数
      map > detect(const cv::Mat& image, map >* score=NULL);   

private:
	boost::shared_ptr< caffe::Net > net_;
	int class_num_;     //类别数+1   ,官方给的demo 是20+1类
};

#endif
源文件ObjectDetector.cpp

#include "ObjectDetector.hpp"
#include 
#include 
#include 
#include 

using std::string;
using std::vector;
using namespace caffe;
using  std::max;
using std::min;


ObjectDetector::ObjectDetector(const std::string &model_file,const std::string &weights_file){
#ifdef CPU_ONLY
	Caffe::set_mode(Caffe::CPU);
#else
	Caffe::set_mode(Caffe::GPU);
#endif 
	net_.reset(new Net(model_file, TEST));
	net_->CopyTrainedLayersFrom(weights_file);
	this->class_num_ = net_->blob_by_name("cls_prob")->channels();  //求得类别数+1
}

//对一张图片,进行检测,将结果保存进map数据结构里,分别表示每个类别对应的目标框,如果需要分数信息,则计算分数
map > ObjectDetector::detect(const cv::Mat& image,map >* objectScore){

	if(objectScore!=NULL)   //如果需要保存置信度
		objectScore->clear();

	float CONF_THRESH = 0.8;  //置信度阈值
	float NMS_THRESH = 0.3;   //非极大值抑制阈值
	int max_side = max(image.rows, image.cols);   //分别求出图片宽和高的较大者
	int min_side = min(image.rows, image.cols);
	float max_side_scale = float(max_side) / float(INPUT_SIZE_LONG);    //分别求出缩放因子
	float min_side_scale = float(min_side) / float(INPUT_SIZE_NARROW);
	float max_scale = max(max_side_scale, min_side_scale);

	float img_scale = float(1) / max_scale;
	int height = int(image.rows * img_scale);
	int width = int(image.cols * img_scale);

	int num_out;
	cv::Mat cv_resized;
	image.convertTo(cv_resized, CV_32FC3);
	cv::resize(cv_resized, cv_resized, cv::Size(width, height)); 
	cv::Mat mean(height, width, cv_resized.type(), cv::Scalar(102.9801, 115.9465, 122.7717));
	cv::Mat normalized;
	subtract(cv_resized, mean, normalized);

	float im_info[3];
	im_info[0] = height;
	im_info[1] = width;
	im_info[2] = img_scale;
	shared_ptr > input_layer = net_->blob_by_name("data");
	input_layer->Reshape(1, normalized.channels(), height, width);
	net_->Reshape();
	float* input_data = input_layer->mutable_cpu_data();
	vector input_channels;
	for (int i = 0; i < input_layer->channels(); ++i) {
		cv::Mat channel(height, width, CV_32FC1, input_data);
		input_channels.push_back(channel);
		input_data += height * width;
	}
	cv::split(normalized, input_channels);
	net_->blob_by_name("im_info")->set_cpu_data(im_info);
	net_->Forward();                                       //进行网络前向传播


	int num = net_->blob_by_name("rois")->num();    //产生的 ROI 个数,比如为 13949个ROI
	const float *rois_data = net_->blob_by_name("rois")->cpu_data();    //维度比如为:13949*5*1*1
	int num1 = net_->blob_by_name("bbox_pred")->num();   //预测的矩形框 维度为 13949*84
	cv::Mat rois_box(num, 4, CV_32FC1);
	for (int i = 0; i < num; ++i)
	{
		rois_box.at(i, 0) = rois_data[i * 5 + 1] / img_scale;
		rois_box.at(i, 1) = rois_data[i * 5 + 2] / img_scale;
		rois_box.at(i, 2) = rois_data[i * 5 + 3] / img_scale;
		rois_box.at(i, 3) = rois_data[i * 5 + 4] / img_scale;
	}

	shared_ptr > bbox_delt_data = net_->blob_by_name("bbox_pred");   // 13949*84
	shared_ptr > score = net_->blob_by_name("cls_prob");             // 3949*21

	map > label_objs;    //每个类别,对应的检测目标框
	for (int i = 1; i < class_num_; ++i){     //对每个类,进行遍历
		cv::Mat bbox_delt(num, 4, CV_32FC1);
		for (int j = 0; j < num; ++j){
			bbox_delt.at(j, 0) = bbox_delt_data->data_at(j, i * 4 + 0, 0, 0);
			bbox_delt.at(j, 1) = bbox_delt_data->data_at(j, i * 4 + 1, 0, 0);
			bbox_delt.at(j, 2) = bbox_delt_data->data_at(j, i * 4 + 2, 0, 0);
			bbox_delt.at(j, 3) = bbox_delt_data->data_at(j, i * 4 + 3, 0, 0);
		}
		cv::Mat box_class = RPN::bbox_tranform_inv(rois_box, bbox_delt);

		vector aboxes;   //对于 类别i,检测出的矩形框保存在这
		for (int j = 0; j < box_class.rows; ++j){
			if (box_class.at(j, 0) < 0)  box_class.at(j, 0) = 0;
			if (box_class.at(j, 0) > (image.cols - 1))   box_class.at(j, 0) = image.cols - 1;
			if (box_class.at(j, 2) < 0)  box_class.at(j, 2) = 0;
			if (box_class.at(j, 2) > (image.cols - 1))   box_class.at(j, 2) = image.cols - 1;

			if (box_class.at(j, 1) < 0)  box_class.at(j, 1) = 0;
			if (box_class.at(j, 1) > (image.rows - 1))   box_class.at(j, 1) = image.rows - 1;
			if (box_class.at(j, 3) < 0)  box_class.at(j, 3) = 0;
			if (box_class.at(j, 3) > (image.rows - 1))   box_class.at(j, 3) = image.rows - 1;
			RPN::abox tmp;
			tmp.x1 = box_class.at(j, 0);
			tmp.y1 = box_class.at(j, 1);
			tmp.x2 = box_class.at(j, 2);
			tmp.y2 = box_class.at(j, 3);
			tmp.score = score->data_at(j, i, 0, 0);
			aboxes.push_back(tmp);
		}
		std::sort(aboxes.rbegin(), aboxes.rend());
		RPN::nms(aboxes, NMS_THRESH);  //与非极大值抑制消除对于的矩形框
		for (int k = 0; k < aboxes.size();){
			if (aboxes[k].score < CONF_THRESH)
				aboxes.erase(aboxes.begin() + k);
			else
				k++;
		}
		//################ 将类别i的所有检测框,保存
		vector rect(aboxes.size());    //对于类别i,检测出的矩形框
		for(int ii=0;ii tmp(aboxes.size());       //对于 类别i,检测出的矩形框的得分
			for(int ii=0;iiinsert(pair >(i,tmp));
		}
	}
	return label_objs;
}

这里的代码,是在参考博客中的代码,我改了下,加了自己的需求。这里的函数返回的是一个map对象,每一个键(类别label),对应一个矩形框向量。比如,一个20类检测任务,而一张图片里有3个人(标签是1),和2辆车(标签是5),那函数会返回一个map,其中有两个键值对,键1对应的值是一个3维的矩形框向量,分别代表着3个人的矩形框;键5对应的值是一个2维的矩形框向量,分别代表的是2辆车的矩形框。同时,函数还接受一个可选参数,可以返回每个矩形框各自对应的置信度。

Ok,现在我们写个主函数,测试下效果吧,我们建个文件夹,首先把网络描述文件test.prototxt拷贝过来,这里我用的是VGG16的,end2end的网络,路径是py-faster-rcnn/models/pascal_voc/VGG16/faster_rcnn_end2end/test.prototxt,Ok,拷贝过来,因为我们不需要python层了,那我们打开这个文件,定位到 Python层,

layer {
   name: 'proposal'
   type: 'Python'
   bottom: 'rpn_cls_prob_reshape'
   bottom: 'rpn_bbox_pred'
   bottom: 'im_info'
   top: 'rois'
   python_param {
     module: 'rpn.proposal_layer'
     layer: 'ProposalLayer'
    param_str: "'feat_stride': 16"
   }
}
把它修改为

layer {
   name: "proposal"
   type: "RPN"
   bottom: "rpn_cls_prob_reshape"
   bottom: "rpn_bbox_pred"
   bottom: "im_info"
   top: "rois"
   rpn_param {
       feat_stride : 16
       basesize : 16
       scale : 8
       scale : 16
       scale : 32
       ratio : 0.5
       ratio : 1
       ratio : 2
       boxminsize :16
       per_nms_topn : 0;
       post_nms_topn : 0;
       nms_thresh : 0.3
   }
}
是的,这里的一系列参数,可以自己设置的,大家可以尝试下

然后,我们需要一个已经训练好的检测caffemodel,这里我直接拿示例的20类demo的caffemodel,也把它拷贝到我们的文件夹下,万事俱备,只欠东风了! 赶紧编写个主函数进行测试吧,我的示例如下:

#include "ObjectDetector.hpp"
#include
#include
#include
using namespace cv;
using namespace std;
string num2str(float i){
	stringstream ss;
	ss< > score;
  map > label_objs=detect.detect(img,&score);  //目标检测,同时保存每个框的置信度

  for(map >::iterator it=label_objs.begin();it!=label_objs.end();it++){
	  int label=it->first;  //标签
	  vector rects=it->second;  //检测框
	  for(int j=0;j

好了,这里网络描述文件是 test.prototxt,调用的是caffemodel是官方示例的model,我这为了简单,改名1.caffemodel了, 对图片1.jpg进行测试, 现在编译main.cpp 文件,命令如下:
app.bin: main.cpp ObjectDetector.cpp
      g++ -o app.bin main.cpp ObjectDetector.cpp -I /home/*****/caffe/include/ -I /home/*****/caffe/.build_release/src/ -I /usr/local/cuda-8.0/include/ `pkg-config --libs --cflags opencv` -L /home/****/caffe/build/lib/ -lcaffe -lglog -lboost_system -lprotobuf 
具体路径参照自己的就好,生成app.bin可执行文件,运行,我们对一张图片进行测试,原图如下                               

                                                             纯C++版的Faster R-CNN(通过caffe自定义RPN层实现)_第1张图片           

检测后,如下:


                                                                 纯C++版的Faster R-CNN(通过caffe自定义RPN层实现)_第2张图片


这里为了方便,我直接输出的标签号以及对应的置信度了。可以看出 ,飞机的的label为1,船的label是4,我们从python版的demo.py中可以证实这点:

CLASSES = ('__background__',                           
           'aeroplane', 'bicycle', 'bird', 'boat',
           'bottle', 'bus', 'car', 'cat', 'chair',
            'cow', 'diningtable', 'dog', 'horse',
             'motorbike', 'person', 'pottedplant',
            'sheep', 'sofa', 'train', 'tvmonitor')


OK,大功告成啦~~~ 

你可能感兴趣的:(Caffe,Faster-Rcnn)