Educational Codeforces Round 54 (Rated for Div. 2)

【小结】:

很久没有打CF了,今天开始每次CF都不能放过了,因为自己本来自身实力就不足了,

如果再不努力就真的不行了,所以任何阻力也都是自己找的借口罢了(flag)。

昨晚真的早点回去宿舍,有两个题都是1A的,然后,第三题都是早上一做就出来了。

自己本来就不聪明,要是再不努力,真的神仙都救我不了。

什么课程,什么4级,什么期末考试,什么帮老师干活,现在在我看来也就是走形式罢了,

把全部精力都投入到 刷题上面去,身边不是缺乏例子,自己虽然没有胡浩那样有定力在网吧里刷题,

但我总不能把时间投入到皇室战争吧。


A. Minimizing the String

You are given a string ss consisting of nn lowercase Latin letters.

You have to remove at most one (i.e. zero or one) character of this string in such a way that the string you obtain will be lexicographically smallest among all strings that can be obtained using this operation.

String s=s1s2…sns=s1s2…sn is lexicographically smaller than string t=t1t2…tmt=t1t2…tm if n

For example, "aaa" is smaller than "aaaa", "abb" is smaller than "abc", "pqr" is smaller than "z".

Input

The first line of the input contains one integer nn (2≤n≤2⋅1052≤n≤2⋅105 ) — the length of ss .

The second line of the input contains exactly nn lowercase Latin letters — the string ss .

Output

Print one string — the smallest possible lexicographically string that can be obtained by removing at most one character from the string ss .

Examples

Input

3
aaa

Output

aa

Input

5
abcda

Output

abca

Note

In the first example you can remove any character of ss to obtain the string "aa".

In the second example "abca" < "abcd" < "abcda" < "abda" < "acda" < "bcda".

【题解】:

 分两个情况即可;

1、如果非严格递增的,就是 aaaaa或者abcdddd。删去最后一个即可

2、如果出现有下降的,比如abcda那就删除下降的前一个。


#include
using namespace std;
const int N=2e5+1000;
char s[N];
int main()
{
	 int n,i,j;
 	scanf("%d%s",&n,s);
 	for(i=1;i

 


B. Divisor Subtraction

You are given an integer number nn. The following algorithm is applied to it:

  1. if n=0n=0, then end algorithm;
  2. find the smallest prime divisor dd of nn;
  3. subtract dd from nn and go to step 11.

Determine the number of subtrations the algorithm will make.

Input

The only line contains a single integer nn (2≤n≤10102≤n≤1010).

Output

Print a single integer — the number of subtractions the algorithm will make.

 

Input

5

Output

1

Input

4

Output

2

Note

In the first example 55 is the smallest prime divisor, thus it gets subtracted right away to make a 00.

In the second example 22 is the smallest prime divisor at both steps.

【题解】:

纯属翻译加看结论:

翻译为:

1、如果是n==0, 则跳出。

2、找到当前n 的最小质因数d。

       然后n=n-d;

3、返回第一步。

好几个学长都翻译错了,

其实这个题很好看出来,如果是偶数,

直接答案就是n/2;

如果本身是素数,那么答案就是1

其他情况就是,先暴力找出最小的质因数d,

然后 答案就是:1+n-d)/2

#include
using namespace std;
const int N=2e5+1000;
typedef long long ll;
char s[N];
int main()
{
	 ll n,i,ans=0,flag=1;
	 cin>>n;
	 if(n&1){
 		for(i=2;i*i<=n;i++){
 			if(n%i==0){
 				ans++;
 				n-=i;flag=0;
 				break;
 			}
 		}
 		if(flag){
 			return 0*printf("1\n");
 		}
 	}
 	ans+=n/2;
 	cout<

 


C. Meme Problem

Try guessing the statement from this picture:

You are given a non-negative integer dd . You have to find two non-negative real numbers aa and bb such that a+b=da+b=d and a⋅b=da⋅b=d .

Input

The first line contains tt (1≤t≤1031≤t≤103 ) — the number of test cases.

Each test case contains one integer dd (0≤d≤103)(0≤d≤103) .

Output

For each test print one line.

If there is an answer for the ii -th test, print "Y", and then the numbers aa and bb .

If there is no answer for the ii -th test, print "N".

Your answer will be considered correct if |(a+b)−a⋅b|≤10−6|(a+b)−a⋅b|≤10−6 and |(a+b)−d|≤10−6|(a+b)−d|≤10−6 .

 

Input

7
69
0
1
4
5
999
1000

Output

Y 67.985071301 1.014928699
Y 0.000000000 0.000000000
N
Y 2.000000000 2.000000000
Y 3.618033989 1.381966011
Y 997.998996990 1.001003010
Y 998.998997995 1.001002005

【题解】:

这个题非常简单,就是找一个a,b,使得他们相加和相乘都等于同一个数,

那么我们就用二分。

因为处理这类查找问题,加上精度的,通常都是二分,没有意外。

我们怎么确定标准呢,其实很简单,看事例,我们看出来了,通常都是一个 非常靠近n的一个数,再乘以1.*****这样的,

我就想到二分可以写了,

如果x*y>n  那么L=mid+eps,因为如果相差太远就会比他大,应该要靠近n。

如果x*y<=n  那么 R=mid-eps ,因为如果靠得太近会出现 0.00000**这样才会小,

最后求解出来的是不是答案呢,那么就需要 用我们的解去验证,代入即可。让他们的差距在1e-6内即可。


#include
using namespace std;
const double eps=1e-10;
double d;
bool check(double x){
    double y=d-x;
    if(x*y>d){
        return true;
    }else{
        return false;
    }
}
int main()
{
    int T;
    cin>>T;
    while(T--){
        cin>>d;
        if(d==4){
            printf("Y %.9f %.9f\n",2.0,2.0);
            continue;
        }
        double L=0,R=d,mid;
        while(L<=R){
            mid=(L+R)/2;
            if(check(mid)){
                L=mid+eps;
            }else{
                R=mid-eps;
            }
        }
        double t1=L,t2=d-L;
        if(fabs(t1*t2-d)<1e-6){
            t1=max(L,d-L);
            t2=d-t1;
            printf("Y %.9f %.9f\n",t1,t2);
        }else{
            printf("N\n");
        }
    }
    return 0;
}

【题解】:

听说学长看到别人的做法居然是解方程组,后来我就看出来了。

这居然是我高中的知识点,却忘记了,韦达定理。

x1 + x2 =-b/a

x1 * x2 = c/a

 

当前  x1+x2=d, x1*x2=d

令a=1,

那么就是求解一个一元二次方程罢了。

这个方程的形式是:

x^2-dx+d=0

首先判断有没有解,用delta = b^2 - 4ac = d^2-4d  >=  0

然后两个解分别为: x1=(d+sqrt(d*d-4d ))/2   .   x2=(d-sqrt(d*d-4d ))/2

然后输出即可:

#include
using namespace std;
int main()
{
    int T;
    scanf("%d",&T);
    while(T--){
        double d;
        scanf("%lf",&d);
        double delta=d*d-4*d;
        if(delta>=0){
            printf("Y ");
        }else{
            printf("N\n");
            continue;
        }
        double t1=(d+sqrt(d*d-4*d))/2;
        double t2=(d-sqrt(d*d-4*d))/2;
        printf("%.9f %.9f\n",t1,t2);
    }
    return 0;
}

 

 

你可能感兴趣的:(CF)